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Superfluidity in a model of massless fermions coupled to scalar bosons
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We study superfluidity in a model of massless fermions coupled to a massive scalar field through a Yukawa
interaction. Gap equations for a condensate with total spinJ50 are solved in the mean-field approximation.
For the Yukawa interaction, the gaps for right- and left-handed fermions are equal in magnitude and opposite
in sign, so that condensation occurs in theJP501 channel. At finite scalar mass, there are two different gaps
for fermions of a given chirality, corresponding to condensation of particle pairs or of antiparticle pairs. These
gaps become degenerate in the limit of infinite scalar mass.@S0556-2821~99!04119-3#

PACS number~s!: 12.38.Mh, 12.38.Lg, 21.65.1f
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I. INTRODUCTION

In fermionic matter which is sufficiently cold and dens
any attractive interaction at the Fermi surface leads to
formation of Cooper pairs@1#. The Cooper pairs form a Bos
condensate, so that exciting a quasiparticle costs an am
of energy>2ufu, where ufu is the gap energy. This ga
produces superfluidity, or, if the fermions are coupled to
gauge field, superconductivity.

In quantum chromodynamics~QCD!, one-gluon exchange
between two quarks is attractive in the color-antitriplet ch
nel. One therefore expects that at sufficiently large qu
chemical potentialm and sufficiently small temperatureT
quarks condense into Cooper pairs which are color antit
lets. This condensate breaks theSU(3) color symmetry of
the ground state, and gives rise tocolor superconductivity.
For QCD, this phenomenon was first investigated by Barr
@2#, by Bailin and Love@3#, and others@4#. In seminal work,
Bailin and Love estimated the gap energy to be on the o
of ufu;1023m. Since the critical temperature for the ons
of superconductivity,Tc , is of the order of the gap energy
ufu, a color-superconducting phase of quark matter co
form in the interior of neutron stars. Color superconductiv
was also studied in anSU(2) gauge theory@5#.

Interest in this subject was renewed through works
Alford, Rajagopal, and Wilczek@6# and by Rapp, Scha¨fer,
Shuryak, and Velkovsky@7#. In these papers, the attractiv
interaction was modeled with the instanton vertex. In
framework of a simple model of the type studied by Nam
and Jona-Lasinio~NJL! @8#, these authors found gap energi
of the order ofufu;m. SinceTc;ufu, for gap energies of
this order of magnitude color superconductivity is no long
only relevant for astrophysical scenarios, it could also oc
in relativistic heavy-ion collisions, whenever the bombardi
energy is large enough to form relatively cold, baryon-ri
quark-gluon matter. The maximum amount of baryon st
ping was found in heavy-ion collisions at Alternating Grad
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ent Synchrotron~AGS! energies,ELab;10 A GeV; there-
fore, the most favorable conditions to form a colo
superconducting phase of quark-gluon matter would occu
nuclear collisions somewhere in the energy range fr
ELab;1 to 40 A GeV, i.e., from GSI–Heavy Ion Synchro
tron ~SIS! to CERN Super Protron Synchrotron~SPS! ener-
gies.

Most studies of color superconductivity assumed that o
the two lightest quark flavors,u and d, form Cooper pairs.
This is based on the argument that, due to the larger stra
quark mass,ms.100 MeV, the Fermi surfaces of non
strange and strange quarks do not match@3#, consequently
there are nous or ds Cooper pairs. However, for a syste
wherems5mu5md[m, this mismatch is, to leading order i
m, only of order (kF,q2kF,s)/m;(ms

22mq
2)/2m2, and there-

fore vanishes at sufficiently large chemical potential. Bas
on this observation, Alford, Rajagopal, and Wilczek su
gested a new form of color superconductivity, where all th
flavors condense to lock the breaking of color and flav
symmetry@9#. Comparison with earlier investigations@10# of
the patterns of symmetry breaking in chiral models revea
@11# that the color-flavor locked state is energetically f
vored. This was independently confirmed by Scha¨fer and
Wilczek in a numerical study of the effective potential@12#.

Other studies which investigated the interplay of co
superconductivity and chiral symmetry breaking at fin
temperature include those of Berges and Rajagopal@13# and
Langfeld and Rho@14#. Color superconductivity was als
investigated via renormalization group techniques by Eva
Hsu, and Schwetz@15# and by Scha¨fer and Wilczek@16#.

All of these studies were based exclusively on NJL-ty
models. The sole exception is the work of Son@17# who
applied renormalization group techniques to study the sc
of the energy gap in QCD. He pointed out that no
instantaneous one-gluon exchange modifies the we
coupling expression for the gap,ufu;m exp(2c/g2) to ufu
;m exp(2c/g); this was also noted in@11#. This increases
the likelihood to find color superconductivity at nonze
temperature.

A quark-quark condensateD f g,ab
i j is a Nc3Nc matrix in

color space (i , j 51, . . . ,Nc), a Nf3Nf matrix in flavor
©1999 The American Physical Society13-1
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ROBERT D. PISARSKI AND DIRK H. RISCHKE PHYSICAL REVIEW D60 094013
space (f ,g51, . . . ,Nf), and a 434 matrix in Dirac space
(a,b51, . . .,4). Quark pair condensation can in princip
occur in channels with arbitrary total spinJ. Most previous
studies indicate, however, that condensation in the cha
with total spinJ50 is favored for two or more flavors.

In this work, we shall not discuss the color or flavor stru
ture of the gap matrix@18#, but rather focus on the Dira
structure. To do so, it is sufficient to study a simpler mod
where fermions interact via the exchange of scalar boso

L5c̄~ ig•]2m!c2gc̄cf1
1

2
~]mf]mf2Ms

2f2!. ~1!

~We do not add a quartic self-interaction for the scalar fie
such an interaction will not qualitatively change our result!
Scalar one-boson exchange is attractive, therefore, we ex
the formation of Cooper pairs at finite density and su
ciently low temperature in theJ50 channel. Since the fer
mions in the Lagrangian~1! are not charged, this model ca
only exhibit superfluidity, not superconductivity. Neverth
less, the Dirac structure of the superfluid condensate
closely analogous to that of the color-superconducting c
densate in QCD.

Our principal result is the following. Massless fermio
have four types ofJ50 condensates, corresponding to t
pairing of fermions with the same helicity and chirality@11#.
For fermions interacting via Yukawa interactions as in~1!,
the gap for right-handed, positive helicity quasiparticles
equal in magnitude~and opposite in sign! to that for left-
handed, negative helicity quasiparticles. A novel feature
the relativistic treatment is the appearance of gaps for qu
antiparticles. With Yukawa interactions, we find that the g
for right-handed, negative helicity quasi-antiparticles is eq
in magnitude to that for left-handed, positive helicity qua
antiparticles. These relations between the right- and l
handed gaps imply that there is condensation only in
JP501 channel. ForMs,`, the quasiparticle and quas
antiparticle gaps are not equal.

In the limit Ms→`, the model~1! reduces to an NJL-type
model, and the quasiparticle and quasi-antiparticle gaps
come degenerate. Thus NJL-type models are unrealistic
that they force the equality of the quasiparticle and qua
antiparticle gaps.

The number of condensates is not merely a technical m
ter, but can even affect the order of a superconducting ph
transition. Consider the transition where up and down qua
condense to a color-superconducting phase. In@11# we dem-
onstrated that if only one condensate appears, such as th
particles, the transition is in the universality class of a sin
U(3) vector and can be of second order. Based on the an
sis of this paper, it seems unavoidable that condensate
both particles and antiparticles appear together. The uni
sality class becomes that of twoU(3) vectors; while the
fixed-point structure of this model is unknown, it might b
driven first order by the Coleman–Weinberg phenomenon
true, it implies that for two degenerate flavors, the col
superconducting transition is of first order, independent
the chiral transition@13#.
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In @11# we also showed that the transition where up a
down quarks condense with strange quarks is driven
order by the Coleman–Weinberg mechanism. Scha¨fer and
Wilczek argued that the degrees of freedom in quark a
hadron matter match at nonzerom @12#. Their observation
implies that this line of first order transitions, which starts
zero temperature, could terminate at some nonzero temp
ture, similar to the liquid-gas transition in water or nucle
matter.

The outline of the paper is as follows. In Sec. II we com
pute the full fermion propagator and discuss the excitat
spectrum in a superfluid. Then, the gap equations are der
in the mean-field approximation for the model~1!. We solve
them in Sec. III. A logarithmic ultraviolet singularity arise
which upon renormalization introduces a renormalizat
scaleL. We study solutions of the gap equations as a fu
tion of the couplingg and the renormalization scaleL. We
also analyze the temperature dependence of the gap en
and discuss the critical temperatureTc , at which superfluid-
ity vanishes. Section IV concludes with a summary of o
results. Appendix A contains a derivation of the grand pa
tion function and the gap equation in the mean-field appro
mation, both for an antifermion-fermion condensate and
fermion-fermion condensate. In Appendix B we analyze
Dirac structure of the gap matrix in detail and make cont
to earlier work@3#. In Appendix C we discuss the renorma
ization of the gap equations. Our units are\5kB5c51. The
metric tensor isgmn5(1,2,2,2).

II. THE GAP EQUATIONS IN THE ULTRARELATIVISTIC
LIMIT

A standard way to study superfluidity is to compute t
grand partition functionZ(T,V,m) associated with~1! in the
mean-field approximation for a fermion-fermion condensa
This is done explicitly in Appendix A, cf. Eq.~A15!. One
arrives at an effective action of the form@cf. Eq. ~A16!, see
also Eq.~1.1! of @3##

I @c̄,c#5E
x
c̄~x!~ ig•]1mg02m!c~x!

1
1

2Ex,y
@c̄C~x!D~x,y!c~y!1H.c.#, ~2!

wherecC(x) is the charge-conjugate spinor, defined by

cC~x!5Cc̄T~x!, c̄C~x!5cT~x!C,

c~x!5Cc̄C
T~x!, c̄~x!5cC

T~x!C, ~3!

andC5 ig2g0 is the charge-conjugation matrix in Dirac rep
resentation,C52C2152CT52C†. We also abbreviated
*x[*0

1/Td( i t )*Vd3x. D(x,y) is the gap matrix. If the system
is translationally invariant,D(x,y)[D(x2y), the Fourier
transform

D~k!5E
x
eik•xD~x! ~4!
3-2
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SUPERFLUIDITY IN A MODEL OF MASSLESS . . . PHYSICAL REVIEW D60 094013
obeys thegap equation@cf. Eq. ~A35!, see also Eq.~1.34! of
@3##

D~k!5g2
T

V (
q

D~k2q,Ms!G0
2~q!D~q!G1~q!. ~5!

Here,k052 i (2n11)pT, (k[(nV*d3k/(2p)3, and

@G0
6#21~k![g•k6mg02m ~6!

is the free inverse fermion propagator, while

G6[$@G0
6#212S6%21 ~7!

is the fermion propagator dressed by the interaction with
fermion-fermion condensate,S6[D7G0

7D6, D1[D, D2

[g0D†g0 . G0
1 corresponds to propagation of free particle

G0
2 to that of charge-conjugate particles.G1 propagates

quasiparticles andG2 charge-conjugate quasiparticles, r
spectively.D(p,Ms)51/(Ms

22p2) is the propagator of the
scalar boson.

In Appendix B we show that massive fermions have ei
possible gaps in theJ50 channel. In the ultrarelativistic
limit, these reduce to four. They correspond to the pairing
right-handed fields with positive helicity with themselve
etc.Consequently, the gap matrix~4! has the form

D~k!5f r 1
1 ~k!Pr 1

1 ~k!1f l 2
1 ~k!Pl 2

1 ~k!

1f r 2
2 ~k!Pr 2

2 ~k!1f l 1
2 ~k!Pl 1

2 ~k!. ~8!

Here,

Pr 1
1 ~k![PrP1~k!, Pl 2

1 ~k![PlP2~k!,

Pr 2
2 ~k![PrP2~k!, Pl 1

2 ~k![PlP1~k! ~9!

are projectors onto states with given chirality and helicity,
denoted by the two subscripts, where

Pr ,l[
16g5

2
, P6~k![

16g5g0g• k̂

2
. ~10!

The additional superscript in~9! refers to the sign of the
energy for a non-interacting fermion field. For massless
mions, this superscript is in principle superfluous: rig
~left-! handed fermions with positive~negative! helicity must
have positive energy, while those with negative~positive!
helicity musthave negative energy. Nevertheless, we find
physically illuminating to retain it.

The quantitiesf r ,l 6
6 are the individual gap functions; fo

example,f r 1
1 corresponds to the condensation of two rig

handed particles with positive helicity, whilef r 2
2 corre-

sponds to the condensation of two right-handed antiparti
with negative helicity. This means that in theJ50 channel,
fermions of different helicity or chirality do not condense
This is due to the projectors in Eq.~8!: the effective action
~2! reduces to a sum of four terms, one for each given chi
ity and helicity, see Eq.~B34!.
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The fact that only fermions with the same helicity co
dense in theJ50 channel is physically obvious in th
center-of-momentum frame of the pair, and holds for eith
massive or massless fermions. In that frame, the requirem
of equal helicity means that the projections of the spin alo
the direction of motion are antiparallel, as in the usual no
relativistic treatment of superconductivity. Taking the ferm
ons to move in thez direction, in the center-of-momentum
frameLz50; thus if J50, alsoSz50. The spin wave func-
tion with Sz50 can be either the antisymmetric singlet,S
50, or the symmetric triplet,S51. To obtain total spinJ
50, for the former,S50 combines withL50, while for the
latter,S51 combines withL51. The signal forL51 is the
appearance ofk̂ in Eqs.~8!,~10!.

In the following, we first discuss the structure of the fu
fermion propagator~7!, because the poles of the full propa
gator determine the excitation spectrum in a superfluid.
then return to the gap equation~5!.

A. The full fermion propagator

In the ultrarelativistic limit, the full propagator~7! as-
sumes the form

G1~q!5$g•q1mg0

2g0@D~q!#†g0~g•q2mg0!21D~q!%21.

~11!

From Eq.~8! one computes

g0D†g05@f r 1
1 #†Pl 1

2 1@f l 2
1 #†Pr 2

2

1@f r 2
2 #†Pl 2

1 1@f l 1
2 #†Pr 1

1 . ~12!

Since the condensatesf are not matrices~i.e., unlike the
QCD case, they do not carry other internal degrees of fr
dom such as color and flavor!, the Hermitian conjugation is
replaced by simple complex conjugation. With the identit

g0D†g0~g•q2mg0!D5~g•q2mg0!~ uf r 1
1 u2Pr 1

1

1uf l 2
1 u2Pl 2

1 1uf r 2
2 u2Pr 2

2

1uf l 1
2 u2Pl 1

2 !, ~13!

and

~g•q2mg0!~g•q1mg0!5@q0
22~ uqu2m!2#~Pr 1

1 1Pl 2
1 !

1@q0
22~ uqu1m!2#~Pr 2

2 1Pl 1
2 !,

~14!

one derives

G1~q!5F Pr 1
1 ~q!

q0
22@e1~f r 1

1 !#2
1

Pl 2
1 ~q!

q0
22@e1~f l 2

1 !#2

1
Pr 2

2 ~q!

q0
22@e2~f r 2

2 !#2
1

Pl 1
2 ~q!

q0
22@e2~f l 1

2 !#2G
3~g•q2mg0!, ~15!

where
3-3
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e6~f![@~ uqu7m!21ufu2#1/2. ~16!

The full propagator~15! has eight poles in the complexq0
plane:

q0
(1,2)56e1~f r 1

1 !, q0
(3,4)56e1~f l 2

1 !,

q0
(5,6)56e2~f r 2

2 !, q0
(7,8)56e2~f l 1

2 !. ~17!

These poles deserve further discussion. The kinetic energ
non-interacting, massless particles with 3-momentumq is
uqu. Let v(uqu) denote the energy of the quasiparticle exci
tions as a function of the kinetic energy of the no
interacting particles. In a non-interacting, ultrarelativis
Fermi system quasiparticles~quasi-antiparticles! are the
usual particles~antiparticles! and consequently the excitatio
spectrum is
ith
d
o
n
ic
no
n
su

he
e
s
m
ns
ion
nl
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v0~ uqu!2m51uqu2m particles,

52uqu1m particle holes,

52uqu2m antiparticles,

51uqu1m antiparticle holes.
~18!

On the other hand, in a superfluid the pairing of particles a
antiparticles changes the excitation spectrum. As is w
known @1#, the excitations are now quasiparticles~quasi-
antiparticles! which are in essence a linear superposition
particles~antiparticles! and particle holes~antiparticle holes!.
This linear superposition is the well-known Bogoliubo
transformation@1#. The quasiparticle excitations are som
times called ‘‘Bogoliubons.’’ On account of~17!, in a super-
fluid the spectrum of right-handed excitations is
v~ uqu!2m[2e1~f r 1
1 !52A~ uqu2m!21uf r 1

1 u2 right-handed quasiparticles,

[1e1~f r 1
1 !51A~ uqu2m!21uf r 1

1 u2 right-handed quasiparticle holes,

[2e2~f r 2
2 !52A~ uqu1m!21uf r 2

2 u2 right-handed quasi-antiparticles,

[1e2~f r 2
2 !51A~ uqu1m!21uf r 2

2 u2 right-handed quasi-antiparticle holes, ~19!

while for left-handed excitations one has

v~ uqu!2m[2e1~f l 2
1 !52A~ uqu2m!21uf l 2

1 u2 left-handed quasiparticles,

[1e1~f l 2
1 !51A~ uqu2m!21uf l 2

1 u2 left-handed quasiparticle holes,

[2e2~f l 1
2 !52A~ uqu1m!21uf l 1

2 u2 left-handed quasi-antiparticles,

[1e2~f l 1
2 !51A~ uqu1m!21uf l 1

2 u2 left-handed quasi-antiparticle holes. ~20!
e-
n-

to
nly
e,
-

asi-
ta-

so-
These branches are displayed in Fig. 1, for simplicity w
a common gapf50.5m. For free fermions, the particle an
hole branches cross at the Fermi surface. The generation
gap produces a phenomenon analogous to level repulsio
quantum mechanics, as the quasiparticle and quasipart
hole branches become disconnected. Relative to the
interacting case, the meaning of quasiparticle a
quasiparticle-hole branch interchanges above the Fermi
face.

The main difference from the non-relativistic case is t
appearance of the~quasi-!antiparticle branch and th
~quasi-!antiparticle-hole branch. This means that conden
tion is not only restricted to particles close to the Fer
surface, but that also antiparticles in the Dirac sea conde
This can be confirmed by considering the fermion-ferm
scattering amplitude: a BCS-type singularity occurs not o
f a
in

le-
n-
d
r-

a-
i
e.

y

for particle-particle scattering, but also for antiparticl
antiparticle scattering, giving rise to the antiparticle conde
satesf r 2,l 1

2 . Notice, however, that it is always easier
excite a quasiparticle than a quasi-antiparticle. It costs o
an energy 2f to excite a quasiparticle at the Fermi surfac
but 2Am21f2 to excite a quasi-antiparticle with zero mo
mentum.

One can also compute the occupation numbers for qu
particles and quasi-antiparticles. To this end, it is advan
geous to Fourier-transform the full propagator to the
called ‘‘mixed’’ ~or ‘‘Saclay’’! representation

G1~t,q!5T(
n

eivntG1~vn ,q!, ~21!
3-4
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where ivn5 i (2n11)pT[2q0. For instance, the free
propagator for massless fermions reads in this represent
@19#

G0
1~t,q!52Fu~t!2NFS uqu2m

T D G
3exp@2~ uqu2m!t#L1~q!g0

1Fu~2t!2NFS uqu1m

T D G
3exp@~ uqu1m!t#L2~q!g0 , ~22!

whereNF(x)[(ex11)21 is the usual Fermi–Dirac distribu
r

ig
e

e
,

09401
ion
tion andL6(q) is the projector onto positive~negative! en-
ergy states@Eq. ~B22! in the massless limit, i.e., forbq51
andaq50#. The occupation numbers are now directly exh
ited as the prefactors of the exponential~imaginary! time
evolution factors. Fort>0, the first term corresponds to th
propagation of particle holes, with the thermal occupat
number 12NF@(uqu2m)/T#, while the second term corre
sponds to the propagation of antiparticles, with the therm
occupation numberNF@(uqu1m)/T#. For t,0, the first term
corresponds to the propagation of particles, with the ther
occupation numberNF@(uqu2m)/T#. The second corre-
sponds to the propagation of antiparticle holes, with occu
tion number 12NF@(uqu1m)/T#.

The full fermion propagator is computed from Eq.~21!
with Eq. ~15!. The result is
G1~t,q!52 (
hs5r 1,l 2

S H u~t!2NFFe1~fhs
1 !

T G J @12nq
1~fhs

1 !#exp@2e1~fhs
1 !t#

2H u~2t!2NFFe1~fhs
1 !

T G J nq
1~fhs

1 !exp@e1~fhs
1 !t# DP hs

1 ~q!g0

2 (
hs5r 2,l 1

S H u~t!2NFFe2~fhs
2 !

T G J @12nq
2~fhs

2 !#exp@2e2~fhs
2 !t#

2H u~2t!2NFFe2~fhs
2 !

T G J nq
2~fhs

2 !exp@e2~fhs
2 !t# DP hs

2 ~q!g0 , ~23!
hat
n-
e
e
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where

nq
6~f![

e6~f!7~ uqu7m!

2e6~f!
. ~24!

In deriving Eq.~23!, in an intermediate step one encounte
terms of the form

~e62m!g02g•q

2e6
and

2~e61m!g02g•q

2e6
.

By adding and subtracting a termuqug0 in the numerator, one
can transform them into

g0~12nq
6!7L7~q!g0

uqu

e6
and 2g0nq

67L7~q!g0

uqu

e6
.

Equation~23! then follows by making use of Eq.~B31! and
the orthogonality of the energy projectors,L1L2[0.

There is a one-to-one correspondence between the e
poles of the full propagator~17! and the eight terms on th
right-hand side of Eq.~23!. The first line in Eq.~23! arises
from the pole for right~left!-handed quasiparticle holes, th
second line from that for right~left!-handed quasiparticles
s

ht

while the third line originates from the pole for right~left!-
handed quasi-antiparticle holes and the fourth line from t
for right~left!-handed quasi-antiparticles. As in the no
interacting case~22!, the occupation numbers can now b
directly read off as the prefactors of the exponential tim
evolution factors.

It is interesting to study two limiting cases of~23!. The
first is the zero-temperature limit, where the Fermi–Dir
distributions vanish on account of the fact that their arg
ment is always positive. Then, the functionsnq

6 defined in
Eq. ~24! are identified with theoccupation numbersfor qua-
siparticles and quasi-antiparticles in a superfluid atT50.
Correspondingly, 12nq

6 are the occupation numbers of qu
siparticle holes and quasi-antiparticle holes, respectiv
These are shown in Fig. 2. The quasiparticle a
quasiparticle-hole occupation numbers exhibit the smea
around the Fermi surface characteristic for a superfluid o
superconductor@1#. The smearing is a consequence of t
fact that the ‘‘Bogoliubons’’ are superpositions of partic
and hole states. Note also that there are always some q
antiparticle-hole excitations present.

The other interesting limit is the non-interacting ca
where one is supposed to recover Eq.~22!. Taking all gaps to
vanish,fhs

6 →0, one hase6→uuqu7mu, such that
3-5
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nq
1→u~m2uqu!, nq

2→1~f→0!. ~25!

The contribution from quasi-antiparticle holes vanishes co
pletely, and the quasi-antiparticle term becomes the anti
ticle term, the third and fourth lines of Eq.~22!. However, in
order to obtain the particle-hole contribution@the first two
lines of Eq.~22!#, one has tocombinethe contribution from
quasiparticles and quasiparticle holes. This can be un

FIG. 1. The dispersion relation for~quasi!particle ~solid!,
~quasi-!antiparticle ~dotted!, ~quasi!particle-hole ~dashed!, and
~quasi-!antiparticle-hole states~dot-dashed!. ~a! Non-interacting,
massless fermions,~b! superfluid, massless fermions.
09401
-
r-

r-

stood by inverting the Bogoliubov transformation whic
combines particles and particle holes to quasiparticles~and
quasiparticle holes!.

B. The gap equations

After discussing the full fermion propagator and the ex
tation spectrum in a superfluid, we now return to the disc
sion of the gap equation~5! in the ultrarelativistic limit. With
the expression~15! for the full propagator, it assumes th
form

FIG. 2. The occupation number for quasiparticlesnq
1 ~solid!,

quasi-antiparticlesnq
2 ~dotted!, quasiparticle holes 12nq

1 ~dashed!,
and quasi-antiparticle holes 12nq

2 ~dot-dashed! in a superfluid at
T50.
D~k!5g2
T

V (
q

D~k2q,Ms!F f r 1
1 ~q!

q0
22@e1~f r 1

1 !#2
Pl 1

2 ~q!1
f l 2

1 ~q!

q0
22@e1~f l 2

1 !#2
Pr 2

2 ~q!

1
f r 2

2 ~q!

q0
22@e2~f r 2

2 !#2
Pl 2

1 ~q!1
f l 1

2 ~q!

q0
22@e2~f l 1

2 !#2
Pr 1

1 ~q!G . ~26!

Forming suitable projections of Eq.~8!, one derives gap equations for the individual gap functions:

f r 1
1 ~k!5

g2

2

T

V (
q

D~k2q,Ms!F 12 k̂•q̂

q0
22@e1~f l 2

1 !#2
f l 2

1 ~q!1
11 k̂•q̂

q0
22@e2~f l 1

2 !#2
f l 1

2 ~q!G , ~27a!

f l 2
1 ~k!5

g2

2

T

V (
q

D~k2q,Ms!F 12 k̂•q̂

q0
22@e1~f r 1

1 !#2
f r 1

1 ~q!1
11 k̂•q̂

q0
22@e2~f r 2

2 !#2
f r 2

2 ~q!G , ~27b!

f r 2
2 ~k!5

g2

2

T

V (
q

D~k2q,Ms!F 11 k̂•q̂

q0
22@e1~f l 2

1 !#2
f l 2

1 ~q!1
12 k̂•q̂

q0
22@e2~f l 1

2 !#2
f l 1

2 ~q!G , ~27c!

f l 1
2 ~k!5

g2

2

T

V (
q

D~k2q,Ms!F 11 k̂•q̂

q0
22@e1~f r 1

1 !#2
f r 1

1 ~q!1
12 k̂•q̂

q0
22@e2~f r 2

2 !#2
f r 2

2 ~q!G . ~27d!
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These gap equations~27! do not agree with those derived
by Bailin and Love@3#. These authors include only half o
the fermion quasiparticle modes: they take the quasipar
and quasiparticle-hole branches, with gapsf r 1

1 andf l 2
1 , but

neglect the quasi-antiparticle and quasi-antiparticle-h
branches, with gapsf r 2

2 andf l 1
2 . They also restrict them

selves to condensation in the 01 channel, which forces
f r 1

1 52f l 2
1 @see Eq.~B35!#. Doing so, they find a single

equation for a linear combination of the gaps. We do not fi
a single equation. Instead, due to the form of the full ferm
propagator~15!, each of the four gap equations~27! contains
a sum of two terms: each gap on the right-hand side, suc
f r 1

1 , is always multiplied by an energy denominator wi
only that gap, 1/$q0

22@e1(f r 1
1 )#2%.

In the case of a point-like four-fermion interaction as
NJL-type models,D(k2q,Ms)→1/Ms

2 . Then, the terms

proportional tok̂•q̂ vanish by symmetry, and the right-han
sides of~27! no longer depend on eitherk0 or k: the gaps are
simply constants. Defining

F~f![
g2

2Ms
2

T

V (
q

F 1

q0
22@e1~f!#2

1
1

q0
22@e2~f!#2G ,

~28!

the gap equations reduce to

f r 1
1 [f r 2

2 5f l 2
1 F~f l 2

1 !, f l 2
1 [f l 1

2 5f r 1
1 F~f r 1

1 !.
~29!

The gaps for right- and left-handed quasi-antiparticles eq
those for the corresponding quasiparticles. This reduces
number of independent gaps to two.

The solutions of Eqs.~29! satisfy 15F(f)F@fF(f)#,
wheref is eitherf r 1

1 or f l 2
1 . One possible solution,f0,

satisfies 1[uF(f0)u; asF(f) is single-valued as a functio
of f for f>0, andF(f)5F(2f), the only possible solu-
tions are6f0, thereforef r 1

1 56f l 2
1 . SinceF,0, the so-

lution of Eqs.~29! obeysf l 2
1 52f r 1

1 . From Eq.~B35! we
then conclude that condensation occurs only in the 01 chan-
nel.

In conclusion, for scalar NJL-type interactions there
only one independent gap function. Physically, this happ
because for a point-like interaction there are no states w
nonzero angular momentum, and so terms in the gap pro
tional to k̂ — which signalL51 — must vanish. In the nex
section we show that scalar boson exchange over a fi
range,Ms,`, lifts this degeneracy and produces two ind
pendent gap functions.

III. SOLVING THE GAP EQUATIONS

The set of equations~27! determines the gap functions fo
massless fermions in the mean-field approximation. In p
ciple, the gaps are functions of the 4-momentumkm, so that
Eqs. ~27! are actuallyintegral equations. In the following,
we assume that the momentum dependence of the gap
tions is negligible. We comment on the validity of this a
09401
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proximation below. Remember that in NJL-type models t
gap functions are automatically independent ofkm.

Under the assumption that the gap functions are sim
constants, one ends up with the following set of fouralge-
braic equations:

f r 1
1 5f l 2

1 @F 0
1~f l 2

1 !2F 1
1~f l 2

1 !#

1f l 1
2 @F 0

2~f l 1
2 !1F 1

2~f l 1
2 !#, ~30a!

f l 2
1 5f r 1

1 @F 0
1~f r 1

1 !2F 1
1~f r 1

1 !#

1f r 2
2 @F 0

2~f r 2
2 !1F 1

2~f r 2
2 !#, ~30b!

f r 2
2 5f l 2

1 @F 0
1~f l 2

1 !1F 1
1~f l 2

1 !#

1f l 1
2 @F 0

2~f l 1
2 !2F 1

2~f l 1
2 !#, ~30c!

f l 1
2 5f r 1

1 @F 0
1~f r 1

1 !1F 1
1~f r 1

1 !#

1f r 2
2 @F 0

2~f r 2
2 !2F 1

2~f r 2
2 !#. ~30d!

where

F n
6~f![

g2

2

T

V (
q

D~k2q,Ms!
~ k̂•q̂!n

q0
22@e6~f!#2

. ~31!

Note thatF 1
6[0 for NJL-type models.

The functionsF0,1
6 are further evaluated replacing th

Matsubara sum overq0[2 i (2n11)pT by a contour inte-
gral and applying the residue theorem. Poles in the comp
q0 plane arise from the fermion as well as the boson pro
gator. Keeping only the former, we obtain

F 0
6[2

g2

32p2k
E

0

`

dq lnFMs
21~k1q!2

Ms
21~k2q!2G q

e6
tanhF e6

2TG ,
~32a!

F 1
6[2

g2

32p2k
E

0

`

dqH Ms
21k21q2

2qk
lnFMs

21~k1q!2

Ms
21~k2q!2G

22J q

e6
tanhF e6

2TG , ~32b!

where we have performed the angular integration and
notedk[uku,q[uqu. SinceF0,1

6 are real, the gap functionsf
can be chosen to be real.

To obtain this result we assume that the exchanged bo
has zero energy,q05k0. This approximation can be justifie
as follows. The dominant term inF0,1

1 comes from particles
close to the Fermi surface,q.m. Assuming thatufu!m, this
produces a logarithmic dependence onufu:

E
0

LUV dq

e1
5E

0

LUV dq

A~q2m!21ufu2
; ln

LUV

ufu
. ~33!
3-7
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~We discuss the ultraviolet cutoffLUV@m below.! The as-
sumption that the gapufu is small relative to the Fermi en
ergy is justified in weak coupling,g!1. To obtain the loga-
rithm ~33!, the fermions have to stay close to the Fer
surface. This can only be achieved if the exchanged bo
has zero energy,q05k0.

Poles of the boson propagator,q05k06AMs
21(k2q)2,

which we neglected in deriving Eqs.~32!, represent pro-
cesses in which the fermions in the gap equation are far f
the Fermi surface; this produces terms of order 1, but no
order ln(LUV /ufu). ~Further, keeping only zero-energ
bosons also eliminates a possible dependence ofF0,1

6 on k0.!
Analogous to Eq.~33!, the functionsF0,1

2 behave as

E
0

LUV dq

e2
5E

0

LUV dq

A~q1m!21ufu2
; ln

LUV

m
~34!

in the limit LUV@m@ufu. Therefore,F0,1
2 do not include

terms ; ln(LUV /ufu) and, in weak coupling, can be ne
glected relative toF0,1

1 . Physically, this is becausee2 repre-
sents the excitation spectrum of quasi-antiparticles which
always far from the Fermi surface, cf. Fig. 1.

While our approximations are controled only in we
coupling, we nevertheless find it illustrative to consider t
qualitative nature of the solutions in strong coupling. Forg
.1, the gap can be of orderm. Similarly, the functionsF0,1

2

are of comparable magnitude toF0,1
1 . We therefore retain

them in the following analysis.
It is surprising that an ultraviolet cutoffLUV appears in

the gap equations. There is no ultraviolet divergence for
gap equations of ordinary superconductors@1#, as a cutoff is
provided by the Debye frequency,vD!m, so that the inte-
grals receive contributions only from a narrow interv
around the Fermi surface,m2vD<q<m1vD . On the other
hand, inHe–3 the cutoff is provided by the chemical pote
tial, m.

The appearance ofLUV is an artifact of our approximation
of taking a constant gap. This approximation is manifes
inconsistent whenk@m. The gap functions fall off at largek,
removing the apparent ultraviolet divergence. Consequen
the true gap function is proportional tom, not LUV . That
there is no ultraviolet divergence in the true gap function c
also be seen by considering the particle-particle a
antiparticle-antiparticle scattering amplitudes. The box d
grams whose infrared singularities generate a non-zero
@1# are manifestly ultraviolet finite, even in the relativist
regime. In order to simplify the solution of the gap equ
tions, however, we take the gap functions to be constant
thus ignore these complications.

With this approximation, the integralF 0
6 is logarithmi-

cally divergent in the ultraviolet, whileF 1
6 is finite. Instead

of using a fixed ultraviolet cutoffLUV , in Appendix C we
show howF 0

6 can be rendered finite by renormalizatio
The result is
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F 0
652

g2

32p2k
E

0

`

dqH q

e6
lnFMs

21~k1q!2

Ms
21~k2q!2G tanhF e6

2TG
2 ln

~k1q!2

~k2q!2J 1
g2

16p2
ln

k2

L2e2
, ~35!

where L is a renormalization scale. One can readily co
vince oneself that forL@k, the renormalization scale can b
identified with the ultraviolet cutoffLUV introduced above.
In light of this, we takeL@m.

In the following, we turn to the solution of the gap equ
tions, first atT50 and then at nonzeroT. It is instructive to
start with the weak-coupling limit,g!1.

A. Weak-coupling limit

The gap energyf is expected to be exponentially small
weak coupling,f;m exp(2c/g2) @1#. The integrands of the
functionsF0,1

1 are strongly peaked aroundq5m, since then
e15ufu!m. Consequently, the main contribution to the i
tegralsF0,1

1 comes from a~small! region m2d<q<m1d,
whered5am, with some constanta which we do not deter-
mine. The functionsF0,1

2 are relatively suppressed by a fact
e1/e2.ufu/2m!1. Ford@ufu:

F 0
1.2

g2

16p2

m

k
lnFMs

21~k1m!2

Ms
21~k2m!2G ln

2d

ufu
, ~36a!

F 1
1.2

g2

16p2

m

k H Ms
21k21m2

2mk

3 lnFMs
21~k1m!2

Ms
21~k2m!2G22J ln

2d

ufu
, ~36b!

F 0
2.0, F 1

2.0. ~36c!

Renormalization corrections are unimportant in this lim
since they only changed.

The gap equations~30! were derived under the approx
mation that the gaps are constants independent ofk. From
Eq. ~36!, however, we see that the functionsF0,1

1 do depend
strongly onk, and peak aroundk5m. Thus, as was see
previously in Eq.~33!, in weak coupling pairing is domi-
nated by fermions close to the Fermi surface. Forg!1 it is
therefore consistent to neglect the momentum dependenc
both F0,1

1 and the gap functions and consider the above
pressions~36! at k5m.

To one-loop order, a scalar mass is generated by its c
pling to a fermion loop:

Ms
25

g2

2 S m2

p2
1T2D . ~37!

If we had included scalar quartic interactions in the Lagra
ian ~1!, they would contribute toMs

2 a term;lT2, wherel
is the quartic coupling. Thus, at zero temperature there is
3-8
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change, while at nonzero temperature there is an innocu
increase ofMs

2 . As will be disussed below, this tends
decreaseTc .

In weak coupling,Ms;gm!m, and we can further ap
proximate

F 0
1.2

g2

16p2
ln

4m2

Ms
2

ln
2d

ufu
, ~38a!

F 1
1.2

g2

16p2 F ln
4m2

Ms
2

22G ln
2d

ufu
.

~38b!

We can now solve the gap equations~30!. Using ~38! we
obtain

f r 1
1 52f l 2

1
g2

8p2
ln

2d

uf l 2
1 u

, ~39a!

f l 2
1 52f r 1

1
g2

8p2
ln

2d

uf r 1
1 u

, ~39b!

f r 2
2 52f l 2

1
g2

8p2 F ln
4m2

Ms
2

21G ln
2d

uf l 2
1 u

, ~39c!

f l 1
2 52f r 1

1
g2

8p2 F ln
4m2

Ms
2

21G ln
2d

uf r 1
1 u

. ~39d!

By the same arguments used at the end of Sec. II in the
of a point-like four-fermion interaction, the first two equ
tions yield f r 1

1 [2f l 2
1 , where f r 1

1 is a solution of 1
5g2/(8p2)ln(2d/ufr1

1 u). The last two equations indicate th
the gap functions for the quasi-antiparticles are larger t
those for the quasiparticles by a factor ln@4m2/Ms

2#21. In
conclusion, the solution of the gap equations to leading or
in weak coupling reads

f r 1
1 52f l 2

1 52d expF2
8p2

g2 G;m expF2
8p2

g2 G ,

~40a!

f r 2
2 52f l 1

2 5F ln
4m2

Ms
2

21Gf r 1
1 . ~40b!

By Eq. ~B35!, this confirms the result already obtained in t
limit Ms→` that J50 pairing of fermions interacting via
scalar boson exchange only occurs in the 01 channel. Note,
however, that in contrast to theMs→` case, wheref r 2

2

5f r 1
1 , in weak coupling there are two independent ga

instead of one, withf r 2
2 ; ln(1/g2)f r 1

1 .

B. Strong coupling

In strong coupling, fermions of all energiesuqu contribute
to the functionsF0,1

6 , so that they have to be computed n
09401
us

se
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er
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merically. Since these functions depend onk[uku, the set of
algebraic equations~30! is consistent only if thisk depen-
dence is negligible. Before actually solving~30!, we there-
fore investigate the functional dependence ofF0,1

6 on k in
detail. This dependence is shown in Fig. 3 forg510 and in
Fig. 4 for g51 for various values off. The renormalization
scale isL510m in both cases.

As the couplingg or f become larger, the functionsF0,1
6

depend less strongly onk. In weak coupling and for smallf,
F0,1

2 remain approximately constant, although they are th
small in magnitude, whileF0,1

1 become peaked around th
Fermi surface. In strong coupling,F 1

6 is smaller thanF 0
6 ,

since thenMs;gm becomes large and the theory approach
the NJL limit, whereF 1

6[0. Note that changes in the reno
malization scale shift the values of the functionsF 0

6 by a
constant amount; a largerL increases the absolute values
these functions.

FIG. 3. The functionsF0,1
6 as functions ofk/m for f5m ~solid!,

0.1m ~dotted!, and 0.01m ~dashed!. The coupling constant isg
510, the renormalization scaleL510m, the temperature is taken t
be T50.

FIG. 4. Same as in Fig. 3, but forg51.
3-9
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Lastly we find that while the functionsF0,1
1 change with

f, the functionsF0,1
2 are nearly independent off. The latter

is easily understood for smallufu!m, sincef only enters
the integrals throughe25A(q1m)21f2.2m for ufu!m.
It is interesting, however, that this behavior persists also
ufu of orderm.

In conclusion, neglecting a possiblek dependence doe
not appear to be a bad approximation unless the coup
becomes substantially smaller than 1. The results of S
III A are then sufficient to obtain the exponential depende
of the gaps on the coupling; to determine the prefactod
requires more sophisticated methods to solve the gap e
tions, for instance the approach of Ref.@20#. However, the
gap energies become rather small forg,1, cf. Fig. 5. We
shall therefore numerically evaluate the gap equations~30!
only for g>1, where thek dependence can be safely n
glected. In what follows, we then always take the values
the functionsF0,1

6 at momentumk5m.
Solving the gap equations~30! numerically, we find that

the solutions satisfy the relationsf r 1
1 52f l 2

1 ,f r 2
2

52f l 1
1 , as is true in the limits ofMs→` and weak cou-

pling. According to Eq.~B35!, this implies that for massles
fermions interacting via scalar boson exchange, condensa
is possible only in the 01 channel.

In Fig. 5~a! we show the dependence of the quantity

f[A@f r 1
1 #21@f l 2

1 #21@f r 2
2 #21@f l 1

2 #2

at T50 ong2/4p, and in Fig. 5~b! the associated behavior o
f r 2

2 andf r 1
1 , normalized tof, both for different values of

the renormalization scaleL.
The value off decreases rapidly with the coupling, b

values off of the order ofm and larger are possible if th
coupling is sufficiently large. The value off increases with
increasing renormalization scaleL. The overall behavior is
in good agreement with the weak-coupling limit

FIG. 5. ~a! The dependence off ~in units of m) on g2/4p for
L510m ~solid! and 100m ~dotted!. ~b! The corresponding values o
f r 2

2 ~upper set of curves! andf r 1
1 ~lower set of curves!, in units of

f. The dashed curve in~a! corresponds to the weak-coupling lim
for f.
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f52dH 212S lnF4m2

Ms
2 G21D 2J 1/2

expF2
8p2

g2 G , ~41!

which is shown by the dashed line. Here,d.25m was taken
to fit the numerical results forL510m. For a respectively
larger value, the weak-coupling limit can also approximat
fit the results forL5100m.

Turning to Fig. 5~b! we observe that, for increasing cou
pling, the difference betweenf r 2

2 andf r 1
1 decreases. This is

in accord with our expectations, since the mass increa
;g, and consequently, the boson propagator approache
form D(p,Ms).1/Ms

2 . We have already discussed at th
end of Sec. II that in this casef r 1

1 5f r 2
2 andf l 2

1 5f l 1
2 . An

interesting observation is that the values for the qua
antiparticle gapf r 2

2 are larger than those for the quasipar
cle gapf r 1

1 for all values ofg, not just in weak coupling, cf.
Eq. ~40!.

C. Temperature dependence of the gap

Finally, we discuss the temperature dependence of the
functions. As in ordinary superconductors, the value off
decreases with temperature, and vanishes atTc , the critical
temperature for the onset of superconductivity~or, in our
case, superfluidity!. Tc can be estimated in weak coupling
where the integrals peak in a narrow region aroundm. With
f[0 one derives

F 0
1.2

g2

16p2
ln

4m2

Ms
2

ln
zd

Tc
, ~42a!

F 1
1.2

g2

16p2 F ln
4m2

Ms
2

22G ln
zd

Tc
, ~42b!

F 0
2.0, F 1

2.0, ~42c!

wherez[2eg/p, and g is the Euler–Mascheroni constan
Usingf r 1

1 52f l 2
1 , the gap equations atTc yield the condi-

tion

15
g2

8p2
ln

zd

Tc
~43!

for the critical temperature, i.e.,

Tc5
z

2
f r 1

1 ~T50!.0.57f r 1
1 ~T50!. ~44!

This relation is identical to that found in BCS theory@1#.
For arbitraryg, the value ofTc has to be determined nu

merically. For the temperature-dependent boson mass
sidered here, the increase of the mass withT actually leads to
smaller values forTc than expected from the BCS resu
~44!, see Fig. 6. This is in agreement with the general exp
tation that larger boson masses lead to smaller values fo
3-10
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gap f, and consequently to smaller values ofTc . We find
thatf r 1

1 andf r 2
2 always vanish at the same temperature

any value of the coupling.

IV. CONCLUSIONS

In this paper, we have investigated superfluidity in a s
tem of massless fermions interacting via scalar boson
change. The gap matrix contains in general four independ
gap functions, corresponding to the condensation of fermi
with the same helicity and chirality. We solved the gap eq
tions in the mean-field approximation as functions of t
couplingg and the renormalization scaleL. For scalar boson
exchange, condensation in the 02 channel does not occur
and the number of independent gap functions reduces to
one for quasiparticles and one for quasi-antiparticles. T
quasi-antiparticle gap is found to be larger than the quasi
ticle gap, by a factor; ln(1/g2) in weak coupling. This is in
contrast to NJL-type models, where the point-like fou
fermion interactions do not allow for pairing withL5S51
and force the equality of the quasiparticle and qua
antiparticle gaps. We also analyzed the temperature de
dence of the gap functions, and found that a temperat
dependent boson mass can significantly reduceTc .

Qualitatively, our model shares the feature with QCD th
the gap is exponentially small forg!1. As can be seen from
Fig. 5~a!, in that regime small variations of the coupling lea
to order-of-magnitude changes in the gap. Moreover, the
energies are quite sensitive to the value of the ultravio
cutoff LUV;L. Taking a small value for the coupling
Bailin and Love found gap energies which are extrem
small, ;1023m;1 MeV for m;1 GeV @3#. In more re-
cent studies@6,7,9,13#, much larger gaps,;100 MeV, were
found. Such large gaps can be obtained from the treatme
Bailin and Love simply by taking larger coupling constan
Alternatively, the latter studies would get smaller values
the gap by reducing the coupling constant, or changing

FIG. 6. The temperature dependence off r 1
1 and f r 2

2 for g
55,L510m. Tc.0.47m is smaller than the value 0.57f r 1

1 (T50)
.1.25m expected in weak coupling.
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form factors employed there to remove the ultraviolet div
gence of the gap integrals.

Clearly, it is essential to correctly compute the magnitu
of the gap in QCD. Studies along this line are in progre
@17,18#.
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APPENDIX A: THE MEAN-FIELD APPROXIMATION

Consider a statistical mechanical system at finite temp
ture T and chemical potentialm where fermions interact via
exchange of anN-component bosonic field. ForN51 the
Lagrangian is identical with Eq.~1!. The grand partition
function of this system is

Z5NE Dc̄DcDf exp$I @c̄,c,f#%, ~A1a!

I @c̄,c,f#5E
x,y

S c̄~x!@G0
1#21~x,y!c~y!

2
1

2 (
a,b51

N

fa~x!Dab
21~x,y!fb~y!D

2E
x
(
a51

N

gc̄~x!Gac~x!fa~x!. ~A1b!

Here,

@G0
6#21~x,y![2 i @ ig•]6mg02m#d (4)~x2y!. ~A2!

Dab(x,y) is the boson propagator, the structure of whi
need not be further specified at this point. The abo
form includes scalar interactions forN51, G151, vector
interactions forN54, fa5ga21,mfm , Ga5ga21,mgm, Dab

21

5ga21,m@D21#mngb21,n , m,n50, . . . ,3, andsimilarly for
other interactions. The bosonic fields can be formally in
grated out with the result

Z5N8~detD21!21/2E Dc̄Dc exp$I @c̄,c#%, ~A3a!

I @c̄,c#5E
x,y

S c̄~x!@G0
1#21~x,y!c~y!

1
g2

2 (
a,b

c̄~x!Gac~x!Dab~x,y!c̄~y!Gbc~y! D .

~A3b!

The last term physically corresponds to the current-curr
interaction displayed in Fig. 7. Since it is biquadratic in t
3-11
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fermion fields, the integration overc̄,c cannot be carried
out. In this appendix, we discuss mean-field approximati
to ~A3a!. The idea is to approximate the biquadratic term
~A3b! by a bilinear term times afermion condensate, which
then allows for integrating overc̄,c. In principle, one can
either have an antifermion-fermion condensate or a ferm
fermion condensate, the latter being the case of interes
describing the phenomenon of superconductivity.

1. The mean-field approximation for an antifermion-fermion
condensate

In the mean-field approximation one approximates two
the four fermion fields in the last term in~A3b! by their
expectation value in order to obtain a bilinear form in t
fermion fields which allows for integration overc̄,c in
~A3a!. One possibility is to contractc̄ and c, as shown in
Fig. 8~a!. The expectation valuêc̄c& corresponds to an
antifermion-fermion condensate.

More specifically@21#, define

j a~x![gc̄~x!Gac~x!, ~A4!

and introduce the fluctuationra(x) of j a(x) around its ex-
pectation valuê j a(x)&,

ra~x!5 j a~x!2^ j a~x!&. ~A5!

FIG. 7. The current-current interaction.

FIG. 8. ~a! The mean-field approximation for an antifermio

fermion condensate, obtained by contractingc̄(y) and c(y). ~b!
The mean-field approximation for a fermion-fermion condensa

contractingc̄(x) and c̄(y).
09401
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Then, assumingDab(x,y)5Dba(y,x), one has to first order
in ra :

g2

2 (
a,b

c̄~x!Gac~x!Dab~x,y!c̄~y!Gbc~y!

[
1

2 (
a,b

j a~x!Dab~x,y! j b~y!

.
1

2 (
a,b

@^ j a~x!&Dab~x,y!^ j b~y!&

12ra~x!Dab~x,y!^ j b~y!&#

5
1

2 (
a,b

@2^ j a~x!&Dab~x,y!^ j b~y!&

12 j a~x!Dab~x,y!^ j b~y!&#. ~A6!

Inserting this back into~A3b! and integrating over the fer
mion fields in~A3a! gives the partition function in the mean
field approximation for an antifermion-fermion condensat

Z^ F̄F & 5N8~detD21!21/2det@G^ F̄F&
1

#21

3expH 2
g2

2 E
x,y

(
a,b

^c̄~x!Gac~x!&Dab~x,y!

3^c̄~y!Gbc~y!&J , ~A7!

where the~inverse! fermion propagator is

@G^F̄F&
1

#21~x,y![@G0
1#21~x,y!2 ig2d (4)~x2y!

3E
z
(
a,b

GaDab~x,z!^c̄~z!Gbc~z!&.

~A8!

This last equation is obviously a self-consistency equat
~or gap equation, or Schwinger-Dyson equation! for the
mean-field propagator, since

^c̄~z!Gbc~z!&[Tr$G^ F̄F &
1

~z,z!Gb%. ~A9!

The explicit evaluation of the partition function is facilitate
assuming translational invariance which allows to Fouri
transform all quantities to momentum space, for details,
@21#.

2. The mean-field approximation for a fermion-fermion
condensate

In the previous subsection A1, we have discussed
mean-field approximation for an antifermion-fermion co
densate. Now we discuss condensation of fermion pairs.
stead of contractingc̄ andc, we now contractc̄ and c̄ ~or
equivalently,c andc), cf. Fig. 8~b!. This leads to a fermion-
fermion condensate. More specifically, introduce the char
conjugate spinorcC via ~3!, and defineḠa as
,

3-12
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Ḡa5CGa
TC21. ~A10!

Then, the four-fermion term in~A3b! is written as

c̄~x!Gac~x!c̄~y!Gbc~y!

5
1

2
@c̄C~x!ḠacC~x!c̄~y!Gbc~y!1H.c.#

52
1

2
Tr@g0J†~y,x!g0ḠaJ~x,y!Gb1H.c.#, ~A11!

where we introduced the 434 matrix

Jab~x,y![cCa~x!c̄b~y!,

Jba
† ~y,x!5@Jab~x,y!#†5@g0c~y!#b@c̄C~x!g0#a .

~A12!

Introducing the fluctuation of this matrix around its expec
tion value,

r~x,y![J~x,y!2^J~x,y!&, ~A13!

and expanding~A11! to linear order inr yields

c̄~x!Gac~x!c̄~y!Gbc~y!

.
1

2
Tr@g0^J

†~y,x!&g0Ḡa^J~x,y!&Gb

22g0J†~y,x!g0Ḡa^J~x,y!&Gb1H.c.#. ~A14!

The result for the partition function in the mean-field a
proximation for a fermion-fermion condensate reads

Z^ FF & 5N8~detD21!21/2

3expH g2

4 E
x,y

(
a,b

Tr@g0^J
†~y,x!&g0Ḡa^J~x,y!&Gb

1H.c.#Dab~x,y!J E Dc̄Dc exp$I @c̄,c#%, ~A15!

with

I @c̄,c#5E
x,y

H c̄~x!@G0
1#21~x,y!c~y!

1
1

2
@c̄C~x!D1~x,y!c~y!1H.c.#J , ~A16!

where

D1~x,y![g2(
a,b

Ḡa^cC~x!c̄~y!&GbDab~x,y!. ~A17!

This equation uniquely defines the gap equation in the me
field approximation. In order to solve this equation, one h
09401
-

n-
s

to compute the expectation value^cC(x)c̄(y)&. This is done
as follows. The Hermitian conjugate of the first term
square brackets in~A16! is

@c̄C~x!D1~x,y!c~y!#†5c̄~y!D2~y,x!cC~x!, ~A18!

where

D2~y,x![g0@D1~x,y!#†g0 . ~A19!

The first term in~A16! can be rewritten in terms of charge
conjugate spinors as

c̄~x!@G0
1#21~x,y!c~y!5c̄C~y!@G0

2#21~y,x!cC~x!.
~A20!

Introducing the 8-component spinors

C[S c

cC
D , C̄[~c̄,c̄C!, ~A21!

the action~A16! can be written in compact matrix notatio
as

I @C̄,C#5
1

2Ex,y
C̄~x!S 21~x,y!C~y!, ~A22!

where

S 215S @G0
1#21 D2

D1 @G0
2#21D . ~A23!

Let us assume translational invariance for the gap mat
D6(x,y)5D6(x2y). Then, the Fourier transforms of th
fields and@G0

6#21,D6 are

c~x!5
1

AV
(

k
e2 ik•xc~k!, c̄~x!5

1

AV
(

k
eik•xc̄~k!,

~A24a!

cC~x!5
1

AV
(

k
e2 ik•xcC~k!,

c̄C~x!5
1

AV
(

k
eik•xc̄C~k!, ~A24b!

@G0
6#21~x!5

T

V (
k

e2 ik•x@G0
6#21~k!,

D6~x!5
T

V (
k

e2 ik•xD6~k!. ~A24c!

Note the choice of signs in the exponential factors forcC
andD2. From Eq.~3!, one would have expected the oppos
sign. This choice has the consequence

cC~k!5Cc̄T~2k!, c̄C~k!5cT~2k!C,

D2~k!5g0@D1~k!#†g0. ~A25!
3-13
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It also ensures that the action is diagonal in moment
space:

I @C̄,C#5
1

2 (
k

C̄~k!
S 21~k!

T
C~k!. ~A26!

In the conventional approach to superconductivity, the ac
is only diagonalized after performing a Bogoliubov transfo
mation. The choice of signs in the Fourier transform
~A24b!,~A24c! for the charge-conjugate spinor andD2

avoids this additional complication.
In order to complete the calculation of the grand partiti

function in the mean-field approximation, one has to perfo
the Grassmann integration over the fermion fieldsc̄,c. In
the action~A26!, however, the fieldscC(k),c̄C(k) also en-
ter; these are not independent integration variables on
count of~3!. To proceed, from~A25! one derives the identi
ties

c~2k![Cc̄C
T~k!, c̄~2k![cC

T~k!C, ~A27!

and rewrites the integration measure as

Dc̄Dc[)
k

dc̄~k!dc~k!

5)
k.0

dc̄~k!dc̄~2k!dc~k!dc~2k!

5Ñ)
k.0

dc̄~k!dcC~k!dc~k!dc̄C~k!, ~A28!

whereÑ is the~irrelevant, since constant! Jacobian from the
transformation~A27!. Moreover, one can show that

1

2 (
k

C̄~k!
S 21~k!

T
C~k![(

k.0
C̄~k!

S 21~k!

T
C~k!.

~A29!

Then,

E Dc̄Dc exp$I @C̄,C#%[Ñ detk.0FS 21

T G
[ÑS detFS 21

T G D 1/2

. ~A30!

The full propagatorS(k) is determined from solving 1
5S 21S, with the result

S5S G1 2G0
1D2G2

2G0
2D1G1 G2 D , ~A31!

where all functions depend on the 4-momentumkm and
where we have introduced

G6[$@G0
6#212S6%21, S6[D7G0

7D6. ~A32!
09401
n
-
s

c-

The off-diagonal components ofS satisfy the identity

G0
7D6G65G7D6G0

6 . ~A33!

This can be proven directly, or by solving 15SS 21.
From Eq. ~A31!, and from ^Ca(k)C̄b(k)&[2TSab(k)

~this identity is proven e.g. in Appendix B of@21#! one ob-
tains

^cC~x!c̄~y!&[
T

V (
k

e2 ik•~x2y)G0
2~k!D1~k!G1~k!.

~A34!

Inserting this into~A17! and taking the Fourier transform
one obtains the gap equation

D1~k!5g2
T

V (
q

(
a,b

ḠaDab~k2q!

3G0
2~q!D1~q!G1~q!Gb . ~A35!

The gap equation has a graphical representation whic
derived from Fig. 8~b!, cf. Fig. 9. All that changed with
respect to Fig. 8~b! is that the explicit value of̂cC(x)c̄(y)&
from ~A31! was used. The blob in Fig. 9 stands for the g
matrix, while the thick~thin! lines represent the full~free!
propagator.

APPENDIX B: THE STRUCTURE OF A SCALAR GAP
MATRIX

In this appendix we analyze the Dirac structure of a sca
gap matrix. We find that in general there areeight indepen-
dent gap functions. Fermi statistics imposes a powerful sy
metry constraint on these functions. With respect to par
four of the gap functions describe condensation in the ch
nel of even parity, the other four in the odd-parity chann
Only fermions with the same helicity condense. With resp
to chirality, four gap functions describe condensation of pa
with the same, the other four that of pairs with the oppos
chirality. The chirality and helicity properties of the ga
functions suggest a different representation scheme for
gap matrix. Within this scheme, we derive that the numbe
independent gap functions reduces tofour in the ultrarelativ-
istic limit.

1. Dirac structure

The Fourier transformD(k) of the ~translationally invari-
ant! scalar gap matrixD(x2y) can be expanded in the bas

FIG. 9. The gap equation.
3-14
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of the 16 linearly independent 434 matrices. However, for
condensation in theJ50 channel, all Lorentz indices have t
be contracted with either the 4-momentum,km, or, because
of the presence of a medium, with the respective 4-velo
of this medium,um. This leaves the eight matrices

1,g•k,g•u,g•kg•u,g5 ,g5g•k,g5g•u,g5g•kg•u.
~B1!

In the rest frame of the medium,um5(1,0), the most genera
ansatz forD is then

D5D1g51D2g• k̂g0g51D3g0g51D41D5g• k̂g01D6g• k̂

1D7g• k̂g51D8g0 , ~B2!

wherek̂[k/uku, and where the gap matrixD as well as the
gap functionsDn depend onk0 ,k. The notation follows that
of Bailin and Love@3#.

2. Symmetry properties

The antisymmetry of the fermion fields provides a po
erful constraint on the gap functionsDn . With ~3! and C
52C21 one rewrites

E
x,y

c̄C~x!D~x2y!c~y!

52E
y,x

cT~x!@D~y2x!#Tc̄C
T~y!

5E
y,x

c̄C~x!C21@D~y2x!#TCc~y!, ~B3!

i.e., in Fourier space

CD~k!C215DT~2k!. ~B4!

Using CgmC2152gm
T , this implies:

Dn~k!51Dn
T~2k!, n51, . . . ,6,

Dn~k!52Dn
T~2k!, n57,8. ~B5!

If we neglect the energy-momentum dependence of the
functionsDn , as we do in our solution of the gap equation
then this equation demands thatD1 , . . . ,D6 are symmetric
matrices in the space of internal degrees of freedom, w
D7 and D8 are antisymmetric. In QCD, for example,Dn, f g

i j

5Dn,g f
j i ,n51, . . . ,6,while Dn, f g

i j 52Dn,g f
j i ,n57,8 @for no-

tation see the discussion preceding Eq.~1!#. If the Dn do not
have internal degrees of freedom, thenD7 andD8 must van-
ish, as noted by Bailin and Love@3#. We stress, however
that D7 and D8 need not vanish when they carry intern
degrees of freedom.

3. Parity

Under a parity transformation,t→t,x→2x, so 3-vectors
change their sign. On Dirac spinors, a parity transformat
09401
y

-

ap
,

le

n

is effected by@22# S(P)5hPg0, wherehP561 is the in-
trinsic parity of a particle. Thusg0 has even parity,
S21(P)g0S(P)5g0, while g i has odd parity,
S21(P)g iS(P)52g i . Wave functions transform a
c8(t,x)5S(P)c(t,2x)5hPg0c(t,2x), i.e., with ~3!,
c̄C8 (t,x)52c̄C(t,2x)S(P), which shows that the spinorc̄C

has opposite parity fromc.
We rewrite the action~2! in Fourier space, with the con

ventions listed in Eq.~A24!:

I @c̄,c#5(
k

H c̄~k!@G0
1#21~k!c~k!

1
1

2
@c̄C~k!D~k!c~k!1H.c.#J . ~B6!

Then, the term

c̄C~k!~D1g51D2g• k̂g0g51D3g0g51D7g• k̂g5!c~k!
~B7!

represents condensation in theeven-parity channel, while the
term

c̄C~k!~D41D5g• k̂g01D6g• k̂1D8g0!c~k! ~B8!

represents condensation in theodd-paritychannel.

4. Helicity

The spinorsc,c̄,cC ,c̄C in the effective action~B6! can
be decomposed with respect to their helicity. The helic
projector is given by

P6~k![
16g5g0g•k

2
, ~B9!

and we denote the helicity-projected spinors by

c6~k!5P6~k!c~k!, c̄6~k!5c̄~k!P6~k!,
~B10a!

cC6~k!5P6~k!cC~k!, c̄C6~k!5c̄C~k!P6~k!.
~B10b!

The second equation results from the fact that due to our
convention in~A24b!, in Fourier spacec̄C(k)5cT(2k)C.

The inverse free fermion propagator as well as the g
matrix ~B2! commute with the helicity projector,

@@G0
1#21~k!,P6~k!#5@D~k!,P6~k!#50. ~B11!

This means that the action~B6! does not mix states of dif-
ferent helicity,

I @c̄,c#[ (
s56

I @c̄s ,cs#. ~B12!
3-15
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As a consequence, condensation in a scalar (J50) channel
can only occur between fermions of the same helicity(11
or 22). For a physical explanation, see the discussion
lowing Eq. ~10!.

5. Chirality

The chirality projector is given by

Pr ,l[
16g5

2
. ~B13!

Let us introduce right- and left-handed spinors via

c r[Prc, c l[Plc, ~B14a!

c̄ r[c̄Pl , c̄ l[c̄Pr . ~B14b!

With ~3!, one then derives

cCr[PlcC , cCl[PrcC , ~B15a!

c̄Cr[c̄CPr , c̄Cl[c̄CPl . ~B15b!

Let us now investigate the effect of the chirality projecto
on the gap matrix~B2!. From gmg552g5gm and Pr ,l

2

5Pr ,l ,PrPl50 one derives

Pr ,lDPr ,l5D1g51D2g• k̂g0g51D41D5g• k̂g0 , ~B16!

while

Pl ,rDPr ,l5D3g0g51D6g• k̂1D7g• k̂g51D8g0 , ~B17!

This result means thatD1 , D2 , D4, andD5 are gap functions
describing condensation of fermion pairs with thesame
chirality ~right-right or left-left!, while D3 , D6 , D7, andD8
are gap functions describing condensation of fermion p
with the oppositechirality ~right-left and left-right!.

Let us summarize the results of this and the preced
subsections. Only particles with the same helicity can c
dense to form a scalar (J50) condensate. In the gener
ansatz~B2!, the term

D1g51D2g• k̂g0g5 ~B18!

describes the condensation of fermions with thesamechiral-
ity in the even-paritychannel, while

D41D5g• k̂g0 ~B19!

describes condensation of fermions with the same chiralit
the odd-paritychannel, and

D3g0g51D7g• k̂g5 ~B20!

describes condensation ofopposite-chiralityfermions in the
even-paritychannel, while
09401
l-

rs
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D6g• k̂1D8g0 ~B21!

describes condensation of opposite-chirality fermions in
odd-paritychannel.

6. Quasiprojector representation of the gap matrix

The properties of the gap matrix with respect to chiral
and helicity suggest a somewhat different representation
stead of the eight matrices~B1!, one can use the eight ma
trices constructed from chirality, helicity, and energy proje
tors. We use the following projectors onto states of posit
and negative energy for free particles:

L6~k![
Ek6~g0g•k1mg0!

2 Ek
[

16~bkg0g• k̂1akg0!

2
,

~B22!

where ak[m/Ek ,bk[uku/Ek . These differ byg0 and the
normalization of the spinors from the commonly used p
jectors@22#, but have the advantage that they are regula
the limit m→0.

The helicity projectors commute with either the chirali
or these energy projectors,

@Pr ,l ,P6~k!#5@P6~k!,L6~k!#50, ~B23!

but, for finite m, as massive spinors are not eigenstates
chirality, the energy projectors do not commute with t
chirality projectors,

@Pr ,L6~k!#57akg0g5 , @Pl ,L6~k!#56akg0g5 .
~B24!

Let us introduce the ‘‘quasiprojectors’’

P r ,l 6
6 ~k![Pr ,lP6~k!L6~k!. ~B25!

These eight quantities constitute a basis which is equiva
to ~B1!. Therefore, the general gap matrix~B2! can alterna-
tively be written as

D5f r 1
1 Pr 1

1 1f l 1
1 Pl 1

1 1f r 2
1 Pr 2

1 1f l 2
1 Pl 2

1

1f r 1
2 Pr 1

2 1f l 1
2 Pl 1

2 1f r 2
2 Pr 2

2 1f l 2
2 Pl 2

2 ,

~B26!

with an obvious notation for the new gap functionsf r ,l 6
6 .

The old gap functionsDn can be expressed in terms of th
new gap functionsf:
3-16
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D15
1

8
$~11bk!@f r 1

1 2f l 2
1 1f r 2

2 2f l 1
2 #1~12bk!@f r 2

1 2f l 1
1 1f r 1

2 2f l 2
2 #%, ~B27a!

D25
1

8
$~11bk!@2f r 1

1 1f l 2
1 1f r 2

2 2f l 1
2 #1~12bk!@f r 2

1 2f l 1
1 2f r 1

2 1f l 2
2 #%, ~B27b!

D35
a

k

8
@2f r 1

1 2f r 2
1 1f l 1

1 1f l 2
1 1f r 1

2 1f r 2
2 2f l 1

2 2f l 2
2 #, ~B27c!

D45
1

8
$~11bk!@f r 1

1 1f l 2
1 1f r 2

2 1f l 1
2 #1~12bk!@f r 2

1 1f l 1
1 1f r 1

2 1f l 2
2 #%, ~B27d!

D55
1

8
$~11bk!@2f r 1

1 2f l 2
1 1f r 2

2 1f l 1
2 #1~12bk!@f r 2

1 1f l 1
1 2f r 1

2 2f l 2
2 #%, ~B27e!

D65
a

k

8
@2f r 1

1 1f r 2
1 1f l 1

1 2f l 2
1 1f r 1

2 2f r 2
2 2f l 1

2 1f l 2
2 #, ~B27f!

D75
a

k

8
@f r 1

1 2f r 2
1 1f l 1

1 2f l 2
1 2f r 1

2 1f r 2
2 2f l 1

2 1f l 2
2 #, ~B27g!

D85
a

k

8
@f r 1

1 1f r 2
1 1f l 1

1 1f l 2
1 2f r 1

2 2f r 2
2 2f l 1

2 2f l 2
2 #. ~B27h!
The new basis~B25! is complete,

(
h5r ,l

(
s56

(
e56

P hs
e ~k!51. ~B28!

However, using~B24! we find that the quasiprojectors~B25!
are not true projectors:

P r 6
1 P r 6

1 5P r 6
1 1

ak

2
g0g5P l 6

1 ,

P r 6
1 P l 6

1 52
ak

2
g0g5P l 6

1 , ~B29a!

P l 6
1 P r 6

1 5
ak

2
g0g5P r 6

1 ,

P l 6
1 P l 6

1 5P l 6
1 2

ak

2
g0g5P r 6

1 , ~B29b!

P r 6
2 P r 6

2 5P r 6
2 2

ak

2
g0g5P l 6

2 ,
09401
P r 6
2 P l 6

2 5
ak

2
g0g5P l 6

2 , ~B29c!

P l 6
2 P r 6

2 52
ak

2
g0g5P r 6

2 ,

P l 6
2 P l 6

2 5P l 6
2 1

ak

2
g0g5P r 6

2 , ~B29d!

P r 6
1 P r 6

2 5
ak

2
g0g5P l 6

2 ,

P r 6
1 P l 6

2 52
ak

2
g0g5P l 6

2 , ~B29e!

P l 6
1 P r 6

2 5
ak

2
g0g5P r 6

2 ,

P l 6
1 P l 6

2 52
ak

2
g0g5P r 6

2 , ~B29f!

P r 6
2 P r 6

1 52
ak

2
g0g5P l 6

1 ,

P r 6
2 P l 6

1 5
ak

2
g0g5 P l 6

1 , ~B29g!
3-17
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P l 6
2 P r 6

1 52
ak

2
g0g5P r 6

1 ,

P l 6
2 P l 6

1 5
ak

2
g0g5P r 6

1 ~B29h!

~the argumentk was dropped for convenience!.
For the remainder of this subsection, we consider the

trarelativistic limit,m5ak50,bk51. In this limit, the qua-
siprojectors becometrue projectors. Moreover, four of the
eight projectors vanish,

Pr 2
1 5Pl 1

1 5Pr 1
2 5Pl 2

2 50 ~m50!. ~B30!

This is another way of stating that there are no mass
right- ~left-! handed fermions with negative~positive! helic-
ity and positive energy, and no right-~left-! handed fermions
with positive ~negative! helicity and negative energy. Th
reduction in the number of projectors can be intuitively u
derstood noting that massless fermions can be describe
terms of 2-component Weyl spinors which require only t
simpler algebra of linearly independent 232 matrices.

Another consequence of the ultrarelativistic limit is th
one of the three projectors in~B25! is redundant:

Pr 1,l 2
1 ~k![Pr ,lP6~k![Pr ,lL

1~k![P6~k!L1~k!,
~B31a!

Pr 2,l 1
2 ~k![Pr ,lP7~k![Pr ,lL

2~k![P7~k!L2~k!.
~B31b!

Thus, we could use any two of the three projectors for chi
ity, helicity, and energy to construct~B25!. We keep all three
indices, however, because it facilitates the physical interp
tation of our results.

Whenm50, as the four projectors~B30! vanish, the eight
independent gap functions reduce tofour, and Eq.~B26! be-
comes

D5f r 1
1 Pr 1

1 1f l 2
1 Pl 2

1 1f r 2
2 Pr 2

2 1f l 1
2 Pl 1

2 . ~B32!

Using Eq.~B27! we obtain for the gap functionsDn :

D15
1

4
@f r 1

1 2f l 2
1 1f r 2

2 2f l 1
2 #, ~B33a!

D25
1

4
@2f r 1

1 1f l 2
1 1f r 2

2 2f l 1
2 #, ~B33b!

D45
1

4
@f r 1

1 1f l 2
1 1f r 2

2 1f l 1
2 #, ~B33c!

D55
1

4
@2f r 1

1 2f l 2
1 1f r 2

2 1f l 1
2 #, ~B33d!

D35D65D75D850. ~B33e!
09401
l-

ss

-
in

t

l-

e-

The use of the projectors makes it clear that there are o
four condensates for massless fermions. This was not ap
ent previously@3#.

Another consequence of~B32! is that the action~B6! de-
composes into four parts; withc r ,l 6

6 [Pr ,l 6
6 c,

I @c̄,c#5I @c̄ r 1
1 ,c r 1

1 #1I @c̄ l 2
1 ,c l 2

1 #

1I @c̄ r 2
2 ,c r 2

2 #1I @c̄ l 1
2 ,c l 1

2 #, ~B34a!

I @c̄hs
e ,chs

e #[(
k

H c̄hs
e ~k!@G0

1#21~k!chs
e ~k!

1
1

2
@c̄Chs

e ~k!D~k!chs
e ~k!1H.c.#J ,

~B34b!

whereh5r ,l ,s56,e56. We draw the important conclu
sion thatin the ultrarelativistic limit, there is condensatio
only of fermions with the same helicity and the same chir
ity.

In the scalar model we find thatf r 1
1 52f l 2

1 and f r 2
2

52f l 1
2 ; thus

D15
1

2
@f r 1

1 1f r 2
2 #, D25

1

2
@2f r 1

1 1f r 2
2 #,

D45D550. ~B35!

From Eqs.~B18!,~B19! we conclude that condensation o
curs only in the 01 channel, and not the 02 channel.

APPENDIX C: RENORMALIZING F 0
6

At T50, we rewrite the functionF 0
6 as

F 0
652

g2

4 E d3q

~2p!3 FD~k2q,Ms!
1

e6
2D~k2q,0!

1

uquG
1FCT , ~C1!

with the counter term

FCT[2
g2

4 E d3q

~2p!3
D~k2q,0!

1

uqu
. ~C2!

We assume that the renormalized boson mass vanishe
zero density and temperature, and so in the counter term
take the boson to have zero mass as well.

The first integral in~C1! is now ultraviolet-finite. The
3-18
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counter term~C2! can be computed via dimensional regula
ization. First rewrite~C2!, using@23#

1

aabb
5

G~a1b!

G~a!G~b!
E

0

1

dx
xa21~12x!b21

@ax1b~12x!#a1b
~C3!

and shiftingq→q1kx, into

FCT52
g2

8 E
0

1

dx
1

A12x
E d3q

~2p!3

1

@q21k2x~12x!#3/2
.

~C4!

Now compute the last integral ind532e dimensions. Note
that this impliesg2→g2L̃32d, whereL̃ has dimensions o
energy. The standard formula@23#
-

,

.

09401
E
0

`

dxxb
1

@x21M2#a
5

1

2

GS b11

2 DGS a2
b11

2 D
G~a!@M2#a2(b11)/2

~C5!

leads to

FCT52
g2

16p2 F2

e
2 ln

k2

L2e2G , ~C6!

whereLe is the renormalization scale,L[L̃Ape11g/2, g
being the Euler–Mascheroni constant. As usual, the 1/e term
in ~C6! is discarded.
.
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