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Superfluidity in a model of massless fermions coupled to scalar bosons
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We study superfluidity in a model of massless fermions coupled to a massive scalar field through a Yukawa
interaction. Gap equations for a condensate with total $pif® are solved in the mean-field approximation.
For the Yukawa interaction, the gaps for right- and left-handed fermions are equal in magnitude and opposite
in sign, so that condensation occurs in fie=0" channel. At finite scalar mass, there are two different gaps
for fermions of a given chirality, corresponding to condensation of particle pairs or of antiparticle pairs. These
gaps become degenerate in the limit of infinite scalar nj&3556-282199)04119-3

PACS numbeps): 12.38.Mh, 12.38.Lg, 21.65.f

. INTRODUCTION ent Synchrotron(AGS) energies,E, ,,~10 AGeV; there-
fore, the most favorable conditions to form a color-

In fermionic matter which is sufficiently cold and dense, superconducting phase of quark-gluon matter would occur in
any attractive interaction at the Fermi surface leads to th@uclear collisions somewhere in the energy range from
formation of Cooper pairgl]. The Cooper pairs form a Bose E ;,~1 to 40 AGeV, i.e., from GSI-Heavy lon Synchro-
condensate, so that exciting a quasiparticle costs an amoution (SIS) to CERN Super Protron Synchrotr¢8PS ener-
of energy=2|¢|, where|¢| is the gap energy. This gap gies.
produces superfluidity, or, if the fermions are coupled to a Most studies of color superconductivity assumed that only
gauge field, superconductivity. the two lightest quark flavors) and d, form Cooper pairs.

In quantum chromodynamid¢®QCD), one-gluon exchange This is based on the argument that, due to the larger strange
between two quarks is attractive in the color-antitriplet chan-quark mass,mg=100 MeV, the Fermi surfaces of non-
nel. One therefore expects that at sufficiently large quarlstrange and strange quarks do not mdtgh consequently
chemical potentialu and sufficiently small temperaturé  there are naus or ds Cooper pairs. However, for a system
guarks condense into Cooper pairs which are color antitripwhereus= u,= uq= u, this mismatch is, to leading order in
lets. This condensate breaks tB&J(3) color symmetry of  u, only of order ((F,q—kF'S)/,wv(mg—mé)/Z,uz, and there-
the ground state, and gives rise dolor superconductivity —fore vanishes at sufficiently large chemical potential. Based
For QCD, this phenomenon was first investigated by Barroi®n this observation, Alford, Rajagopal, and Wilczek sug-
[2], by Bailin and Love[3], and other$4]. In seminal work, gested a new form of color superconductivity, where all three
Bailin and Love estimated the gap energy to be on the ordeftavors condense to lock the breaking of color and flavor
of |¢|~10 3. Since the critical temperature for the onsetsymmetry[9]. Comparison with earlier investigatiofis0] of
of superconductivityT., is of the order of the gap energy, the patterns of symmetry breaking in chiral models revealed
||, a color-superconducting phase of quark matter could11] that the color-flavor locked state is energetically fa-
form in the interior of neutron stars. Color superconductivityvored. This was independently confirmed by Sehaand
was also studied in aBU(2) gauge theory5]. Wilczek in a numerical study of the effective potenfiaP].

Interest in this subject was renewed through works by Other studies which investigated the interplay of color
Alford, Rajagopal, and Wilczek6] and by Rapp, Sclier,  superconductivity and chiral symmetry breaking at finite
Shuryak, and Velkovsky7]. In these papers, the attractive temperature include those of Berges and Rajagdi®&iland
interaction was modeled with the instanton vertex. In theLangfeld and Rhd14]. Color superconductivity was also
framework of a simple model of the type studied by Nambuinvestigated via renormalization group techniques by Evans,
and Jona-LasiniéNJL) [8], these authors found gap energiesHsu, and Schwetfl5] and by Schier and Wilczek{ 16].
of the order of| ¢|~ u. SinceT.~|¢|, for gap energies of All of these studies were based exclusively on NJL-type
this order of magnitude color superconductivity is no longermodels. The sole exception is the work of Sdiv] who
only relevant for astrophysical scenarios, it could also occumpplied renormalization group techniques to study the scale
in relativistic heavy-ion collisions, whenever the bombardingof the energy gap in QCD. He pointed out that non-
energy is large enough to form relatively cold, baryon-richinstantaneous one-gluon exchange modifies the weak-
quark-gluon matter. The maximum amount of baryon stopcoupling expression for the gapg|~ u exp(—c/g?) to | 4|
ping was found in heavy-ion collisions at Alternating Gradi- ~ u exp(—c/g); this was also noted ifill]. This increases

the likelihood to find color superconductivity at nonzero

temperature. )
*Email address: pisarski@bnl.gov A quark-quark condensaty, ,z is @ NeX N matrix in
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space t,g=1,... N¢), and a 4x4 matrix in Dirac space In [11] we also showed that the transition where up and
(a,8=1,...,4). Quark pair condensation can in principle down quarks condense with strange quarks is driven first
occur in channels with arbitrary total spih Most previous order by the Coleman—Weinberg mechanism. ‘8ahand
studies indicate, however, that condensation in the chann&Vilczek argued that the degrees of freedom in quark and
with total spindJ=0 is favored for two or more flavors. hadron matter match at nonzefo[12]. Their observation
In this work, we shall not discuss the color or flavor struc-implies that this line of first order transitions, which starts at
ture of the gap matriX18], but rather focus on the Dirac zero temperature, could terminate at some nonzero tempera-
structure. To do so, it is sufficient to study a simpler model,ture, similar to the liquid-gas transition in water or nuclear
where fermions interact via the exchange of scalar bosons:matter.
The outline of the paper is as follows. In Sec. Il we com-
1 pute the full fermion propagator and discuss the excitation
L=¢(iy-d—m)y—giihd+ E((;M(Mud,_ M§¢2)_ (1) spectrum in a superflwd.'The_n, the gap equations are derived
in the mean-field approximation for the mod&). We solve
them in Sec. lll. A logarithmic ultraviolet singularity arises,

(We do not add a quartic self-interaction for the scalar fieldWhich upon renormalization introduces a renormalization
such an interaction will not qualitatively change our resilts. scaleA. We study solutions of the gap equations as a func-
Scalar one-boson exchange is attractive, therefore, we expelé@n of the couplingg and the renormalization scale. We

the formation of Cooper pairs at finite density and suffi-also analyze the temperature dependence of the gap energy
ciently low temperature in thd=0 channel. Since the fer- and discuss the critical temperatuFe, at which superfluid-
mions in the Lagrangiafil) are not charged, this model can ity vanishes. Section IV concludes with a summary of our
only exhibit superfluidity, not superconductivity. Neverthe- results. Appendix A contains a derivation of the grand parti-
less, the Dirac structure of the superfluid condensate i§on function and the gap equation in the mean-field approxi-

closely analogous to that of the color-superconducting conmation, both for an antifermion-fermion condensate and a
densate in QCD. fermion-fermion condensate. In Appendix B we analyze the

Our principal result is the following. Massless fermions Dirac structure of the gap matrix in detail and make contact
have four types ofl=0 condensates, corresponding to theto earlier work[3]. In Appendix C we discuss the renormal-
pairing of fermions with the same helicity and chiralityl]. ~ ization of the gap equations. Our units &re kg=c=1. The
For fermions interacting via Yukawa interactions as(ly, ~ metric tensor ig*"=(+,—,—,—).
the gap for right-handed, positive helicity quasiparticles is
equal in magnituddand opposite in signto that for left-  Il. THE GAP EQUATIONS IN THE ULTRARELATIVISTIC
handed, negative helicity quasiparticles. A novel feature of LIMIT
the relativistic treatment is the appearance of gaps for quasi- .
antiparticles. With Yukawa interactions, we find that the gap A standard way to study superfluidity is to compute the

for right-handed, negative helicity quasi-antiparticles is equaigrand partition fun_ctiorZ(T,V,,u) ass_ociated ‘_Nitml) in the
in magnitude to that for left-handed, positive helicity quasi_mean—ﬂeld approximation for a fermion-fermion condensate.

antiparticles. These relations between the right- and left] NS iS done explicitly in Appendix A, cf. EQUALS5). One

handed gaps imply that there is condensation only in th&'rves at an effective action of the forfof. Eq. (A16), see
JP=0" channel. ForM <, the quasiparticle and quasi- 2/S° Ed-(1.1) of [3]]
antiparticle gaps are not equal. o .

In the limit Mg— <0, the model1) reduces to an NJL-type 1[4, iﬁ]:f P(X)(iy- 4+ mwyg—m)h(X)
model, and the quasiparticle and quasi-antiparticle gaps be- x
come degenerate. Thus NJL-type models are unrealistic, in 1 o
tha.t the_y force the equality of the quasiparticle and quasi- + Ef [c(X)A(X,y)d(y)+H.c], (2
antiparticle gaps. Xy

The number of condensates is not merely a technical mat- . . . .
ter, but can even affect the order of a superconducting phasénere#c(x) is the charge-conjugate spinor, defined by

transition. Consider the transition where up and down quarks

—_ T s T
condense to a color-superconducting phas¢11f we dem- Pc(X)=Cy(x),  ¢e(X)=¢ (X)C,
onstrated that if only one condensate appears, such as that for — _ .
particles, the transition is in the universality class of a single P(X)=Cihc(x),  (X)=c(X)C, ()]

U(3) vector and can be of second order. Based on the analy- o, ) ) o

sis of this paper, it seems unavoidable that condensates f8fdC=iy"vo is the_clharge—TconJug?tlon matrix in Dirac rep-
both particles and antiparticles appear together. The univefésentationC=-C--=-C'=-C’. We also abbreviated
sality class becomes that of twd(3) vectors: while the Jx=/g d(it)[vd®x. A(x,y) is the gap matrix. If the system
fixed-point structure of this model is unknown, it might be is translationally invariantA(x,y)=A(x—y), the Fourier
driven first order by the Coleman—Weinberg phenomenon. Ifransform

true, it implies that for two degenerate flavors, the color-

superc_onductin_g_ transition is of first order, independent of A(K) = j ek XA (x) (4)
the chiral transitiorf13]. X
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obeys thegap equatioricf. Eq.(A35), see also Eq.1.34) of The fact that only fermions with the same helicity con-
[3]] dense in theJ=0 channel is physically obvious in the
center-of-momentum frame of the pair, and holds for either
)T _ N massive or massless fermions. In that frame, the requirement
A(k)=g v > D(k=q,M9Go (AGH(A). (B)  of equal helicity means that the projections of the spin along
a the direction of motion are antiparallel, as in the usual non-

Here, ko= —i(2n+1)aT, =, =3,V/[d3k/(2m7)3, and relativistic treatment of superconductivity. Taking the fermi-
0 Pok N ’ ons to move in the direction, in the center-of-momentum
[Ge1 HK)=y K+ uyo—m (6) frameL,=0; thus ifJ=0, alsoS,=0. The spin wave func-

tion with S,=0 can be either the antisymmetric singl&t,

=0, or the symmetric tripletS=1. To obtain total spin

=0, for the formerS=0 combines witlL =0, while for the
G*={[Gs] -3¢ (7) latter, S=1 co[nbines with.=1. The signal fol.=1 is the

appearance df in Egs.(8),(10).

is the fermion propagator dressed by the interaction with the In the following, we first discuss the structure of the full

fermion-fermion condensat& *=A"GjA", At=A, A~ fermion propagato(7), because the poles of the full propa-

=70A 0. G¢ corresponds to propagation of free particles,gator determine the excitation spectrum in a superfluid. We

G, to that of charge-conjugate particle&." propagates then return to the gap equati¢).
quasiparticles ands~ charge-conjugate quasiparticles, re- A. The full fermion propagator
spectively.D(p,M¢)=1/(Ms—p7) is the propagator of the In the ultrarelativistic limit, the full propagato(7) as-

scalar boson.
In Appendix B we show that massive fermions have eightSumes the form

is the free inverse fermion propagator, while

possible gaps in thd=0 channel. In the ultrarelativistic GH(aQ)={y-q+uyo
limit, these reduce to four. They correspond to the pairing of . . .
right-handed fields with positive helicity with themselves, —vol A(@)] vo(y-a—pyo) "A()}
etc. Consequently, the gap matri%) has the form (12)
A(K)= ¢, (K)P L (K)+ ¢, (K)P, (k) From Eq.(8) one computes
o (WP (K +ér (KPL(K). (8 YA yo=[&7 1P+ 1P
Here, o P4 TPL. (12
. . Since the condensates are not matricegi.e., unlike the
P (k)=PP.(k), P_(k)=PP_(k), QCD case, they do not carry other internal degrees of free-
- - dom such as color and flayoithe Hermitian conjugation is
P (K)=PP_(k), P (k)=PP.(k) (9 replaced by simple complex conjugation. With the identities

are projectors onto states with given chirality and helicity, as ~ YoA vo(y-a—umyo) A= (y-q— o) (| ¢/ [*P,
denoted by the two subscripts, where _ _
Y P + PP+ by PP

_ 1%y _ = rsnork (10 +|o PP, (13)

and

The additional superscript i9) refers to the sign of the o ) a2 N2t +
energy for a non-interacting fermion field. For massless fer—(y A= wyo)(y A+ myo)=[do (ol =) ")(Prs + Po)

mions, this superscript is in principle superfluous: right- +[qg_(|Q|+M)2](Pr_—+7>|_+)-
(left-) handed fermions with positiviemegative helicity must
have positive energy, while those with negatijositive (14)

helicity musthave negative energy. Nevertheless, we find itgne derives
physically illuminating to retain it.

The quantitiesp;,.. are the individual gap functions; for N P (q) P(q)
example,d;ﬁ’+ corresponds to the condensation of two right- G'(q)= q2—[e+(¢+ )2 qz—[e*(d)* )2
handed particles with positive helicity, while,_ corre- 0 ” 0 -
sponds to the condensation of two right-handed antiparticles P_(q) Pr(q)
with negative helicity. This means that in tde=0 channel, 5 S > —
fermions of different helicity or chirality do not condense. Qo—Le (&))" qo—Le (H11)]

This is due to the projectors in E¢B): the effective action
(2) reduces to a sum of four terms, one for each given chiral-
ity and helicity, see Eq(B34). where

X(y-d—myo), (15
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e (p)=[(alF w)*+|4*1"% (16) wo(|a))—pu=+|al—p particles,
The full propagator(15) has eight poles in the compley, =—lal+x particle holes,
plane: N
=—|g|—u antiparticles,
(1,2)_ + + (3.4)_ + +
Q== (¢y), Qo '=%e (H-), =+|qg|+x antiparticle holes.
9= (60). af¥=xe (4. @D 19

On the other hand, in a superfluid the pairing of particles and
These poles deserve further discussion. The kinetic energy @intiparticles changes the excitation spectrum. As is well-
non-interacting, massless particles with 3-momeniyns  known [1], the excitations are now quasiparticlésuasi-
|q|. Let w(|q|) denote the energy of the quasiparticle excita-antiparticle$ which are in essence a linear superposition of
tions as a function of the kinetic energy of the non-particles(antiparticles and particle holegantiparticle holes
interacting particles. In a non-interacting, ultrarelativistic This linear superposition is the well-known Bogoliubov
Fermi system quasiparticlegquasi-antiparticles are the transformation[1]. The quasiparticle excitations are some-
usual particlegantiparticleg and consequently the excitation times called “Bogoliubons.” On account @l7), in a super-
spectrum is fluid the spectrum of right-handed excitations is

o(|la)—p=—€"(¢)=—(lal—w)?+|4/ . [* right-handed quasiparticles,

=+e" (¢ )=+ (g —um)?+|®.|? right-handed quasiparticle holes,

=—¢ (¢ )=—+(|g/+un)?+|¢_|?> right-handed quasi-antiparticles,

=+e (¢ )=+ (al+u)?+|p,_|? right-handed quasi-antiparticle holes, (19

while for left-handed excitations one has

o(|a)—p=—€"(¢")=— (ol —m)?+|¢_|* left-handed quasiparticles,

=+e" (¢ )=+ (g —p)?+|¢_|? left-handed quasiparticle holes,

=—¢ (¢)=—(q+p)?+|¢.|? left-handed quasi-antiparticles,

=+e (¢;)="+(al+u)?+]|¢.|?> left-handed quasi-antiparticle holes. (20

These branches are displayed in Fig. 1, for simplicity withfor particle-particle scattering, but also for antiparticle-
a common gapp=0.5u. For free fermions, the particle and antiparticle scattering, giving rise to the antiparticle conden-
hole branches cross at the Fermi surface. The generation ofsdtes, |, . Notice, however, that it is always easier to

gap produces a phenomenon analogous to level repulsion @ ite 4 quasiparticle than a quasi-antiparticle. It costs only
guantum mechanics, as the quasiparticle and quasiparticl

&n energy 2 to excite a quasiparticle at the Fermi surface,

hole branches become disconnected. Relative to the non- ) . . ; .
interacting case, the meaning of quasiparticle andUl 2V#“+¢" to excite a quasi-antiparticle with zero mo-

quasiparticle-hole branch interchanges above the Fermi su nentum. . .
face. One can also compute the occupation numbers for quasi-

The main difference from the non-relativistic case is theparticles and q.uasi-antiparticles. To this end, it is advanta-
appearance of the(quasihantiparticle branch and the geous“to_Fou”rler-tff':msforrT the full propagator to the so-
(quasijantiparticle-hole branch. This means that condensa‘-zalled mixed” (or “Saclay”) representation
tion is not only restricted to particles close to the Fermi
surface, but that also antiparticles in the Dirac sea condense.

This can be confirmed by considering the fermion-fermion GH(rq)=T> €*'G*(w,,q), (21)
scattering amplitude: a BCS-type singularity occurs not only n
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where iw,=i(2n+1)7T=—q,. For instance, the free tion andA*(q) is the projector onto positivénegative en-
propagator for massless fermions reads in this representati@ngy state§Eq. (B22) in the massless limit, i.e., foB,=1
[19] anda,=0]. The occupation numbers are now directly exhib-
ited as the prefactors of the exponenti@haginary time
evolution factors. For=0, the first term corresponds to the

Gg(m.q)=—1 6( T)—NF(|q|T ’“) propagation of particle holes, .With the thermal occupation
] number :Ng[(]g|—«)/T], while the second term corre-
xexd — (|a] = ) 71A () vo sponds to the propagation of antiparticles, with the thermal
] occupation numbeN[ (|g|+ «)/T]. For 7<0, the first term
+ o= 7N (|Q| +M” corresponds to the propagation of particles, with the thermal
T occupation numberNg[(|g|—u)/T]. The second corre-

B sponds to the propagation of antiparticle holes, with occupa-
xexd (lal+x)7]A~(q) vo, (22) tion number T Ng[(|q] + w)/T].

The full fermion propagator is computed from E@.1)
whereNg(x)=(e*+ 1) ! is the usual Fermi—Dirac distribu- with Eq. (15). The result is

+(¢+ + 4+ +
c(ra=- 3 ([em—NF © ][1—nq<¢hs>]exq—e*<¢hs>r]
+(¢+S) + o+ +0 g+ +
_{ 0(—7)—Ng 6% }nq (pnoexd e (¢hs)r])73hs(q)yo
(&, o _
_hs=zl+ ({0(7)_NF < ThS)H[l_nq((ﬁhs)]eXn:_e(¢hs)7-]
(nd || o _
_{9(_7)_NF[6 -I—h an(¢hs)eXF{€ (¢hs)7])7)hs(q)701 (23
|
where while the third line originates from the pole for rigleft)-
handed quasi-antiparticle holes and the fourth line from that
N e (P)F(al+p) 24 for right(left)-handed quasi-antiparticles. As in the non-
Nq (#)= 2= () ' (24) interacting cas€22), the occupation numbers can now be

directly read off as the prefactors of the exponential time
In deriving Eq.(23), in an intermediate step one encountersevolution factors.

terms of the form It is interesting to study two limiting cases (23). The
. . first is the zero-temperature limit, where the Fermi—Dirac
(6" —m)yo— 79 d —(e +u)yo— 79 distributions vanish on account of the fact that their argu-

2¢&F an 2¢” ' ment is always positive. Then, the function$ defined in

Eq. (24) are identified with thedccupation numberfor qua-
By adding and subtracting a ter y, in the numerator, one siparticles and quasi-antiparticles in a superfluidTat0.

can transform them into Correspondingly, +ng are the occupation numbers of qua-
siparticle holes and quasi-antiparticle holes, respectively.

AT [l v,z | These are shown in Fig. 2. The quasiparticle and
Yo(1=ng)=A"(q) 706_t and = yong +A (Q)Voej- quasiparticle-hole occupation numbers exhibit the smearing

around the Fermi surface characteristic for a superfluid or a
Equation(23) then follows by making use of E¢B31) and  superconductofl]. The smearing is a consequence of the
the orthogonality of the energy projectors; A~ =0. fact that the “Bogoliubons™ are superpositions of particle

There is a one-to-one correspondence between the eighnd hole states. Note also that there are always some quasi-

poles of the full propagatofl7) and the eight terms on the antiparticle-hole excitations present.
right-hand side of Eq(23). The first line in Eq.(23) arises The other interesting limit is the non-interacting case
from the pole for righleft)-handed quasiparticle holes, the where one is supposed to recover E2). Taking all gaps to
second line from that for rigkieft)-handed quasiparticles, vanish,¢,.—0, one has™—||q|+ x|, such that
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FIG. 1. The dispersion relation fofquasjparticle (solid), FIG. 2. The occupation number for quasmarnclq}‘s (solid),

(quasijantiparticle (dotted, (quasjparticle-hole (dashedf and  quasi-antiparticles, (dotted, quasiparticle holes&n (dashedl
(quasijantiparticle-hole stategdot-dashell (a) Non-interacting, and quasi-antiparticle holes-In, (dot-dashefin a superflwd at
massless fermiongb) superfluid, massless fermions. T=0.

stood by inverting the Bogoliubov transformation which
Ng q — 0(p—a)), ng —1(¢—0). (25  combines particles and particle holes to quasipartitesl
quasiparticle holes

The contribution from quasi-antiparticle holes vanishes com- B. The gap equations

pletely, and the quasi-antiparticle term becomes the antipar- After discussing the full fermion propagator and the exci-
ticle term, the third and fourth lines of E€R2). However, in  tation spectrum in a superfluid, we now return to the discus-
order to obtain the particle-hole contributithe first two  sion of the gap equatiof®) in the ultrarelativistic limit. With
lines of Eq.(22)], one has tawombinethe contribution from  the expressior(15) for the full propagator, it assumes the
guasiparticles and quasiparticle holes. This can be undeferm

T ¢ .(q) - ¢ (q) B
A(K)=g?5 2 D(k—qMy)| 5—————=P ( D+ 5—— =P, ()
(0= 2 Dk=aM)| = BP0 o e (@
ér_(q) N éi(a) N l
+—7>_ )+ ——————P(q) |. (26)
R-[e ()7 (d G—le (¢)] <

Forming suitable projections of E¢8), one derives gap equations for the individual gap functions:

4. 00-2 1S pk-qm >_L¢| (@)+ “_—R'a_qm(q)], (27a
2 V54 [a5—[e" (6] do—Le (312

b 9;5; (k‘q'Ms):qg_[l;—%‘f’“q”qg_[l:——%%(Q)l' (27h)

¢ (k)= 9;3; (k—q,Ms>:qg_;:+—$_)]z¢r<q> qo[l__—zmﬁmq)] (279

i (k)= g;g; (k—q,Ms>:(](2)_[l;—$+)]z¢L<q>+%_;—%¢r<q>1. (270
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These gap equatiorf27) do not agree with those derived proximation below. Remember that in NJL-type models the
by Bailin and Love[3]. These authors include only half of gap functions are automatically independenk6f
the fermion quasiparticle modes: they take the quasiparticle Under the assumption that the gap functions are simply
and quasiparticle-hole branches, with gaps and¢,” , but  constants, one ends up with the following set of falge-
neglect the quasi-antiparticle and quasi-antiparticle-holédraic equations:
branches, with gap&,_ and ¢,, . They also restrict them-

selves to condensation in theOchannel, which forces b= [ Fo(d)—Fq(H-)]
¢, .=— ¢, [see Eq.(B35)]. Doing so, they find a single N o
equation for a linear combination of the gaps. We do not find T [ Fold )+ Fi ()], (303
a single equation. Instead, due to the form of the full fermion . o o
propagatof15), each of the four gap equatiof®7) contains A= [Fold)—Fi(dy)]
a sum of two terms: each gap on the right-hand side, such as o _ 30
¢, , is always multiplied by an energy denominator with T [Fold)+F ()], (30b)
only that gap, Ha5—[e"(4,)1%. .

In the case of a point-like four-fermion interaction as in b= _[Fo(h_)+F1 ()]

- —_— 2 — — — - -

NJL-type models,D(k—q,Ms)—1/Mg. Then, the terms + o[ Fo (b)) —Fr(di)l, (300

proportional tok - q vanish by symmetry, and the right-hand
sides of(27) no longer depend on eith&g or k: the gaps are -
simply éor?stants. gDefininpg ’ 9ap G5 = [ Fo () +Fi (/)]

té[Fol(do)=Fi(ho)] (30d)

cy= LT Lt
DoV 2 (Gt o qle (D) where
(28 2T (R a)”
the gap equations reduce to f§(¢)57 v Eq: D(k_qus)m- (32)
b =b_ =" F(d"), ¢_=¢=¢ F(d). Note thatF; =0 for NJL-type models.

The functionsj—'&1 are further evaluated replacing the

The gaps for right- and left-handed quasi-antiparticles equ%atsubara sum ovelo=—1i(2n+1)aT by a contour inte-

those for the corresponding quasiparticles. This reduces t
number of independent gaps to two.

The solutions of Eqs(29) satisfy 1=F(¢)F[ ¢F ()],
where ¢ is either ¢, or ¢;" . One possible solutiong,,

ral and applying the residue theorem. Poles in the complex
o plane arise from the fermion as well as the boson propa-
gator. Keeping only the former, we obtain

satisfies &|F(¢)|; asF () is single-valued as a function ~ z=_ _ g° f“ 0 MS+(k+a)? itam{f_
of ¢ for =0, andF(¢)=F(— ¢), the only possible solu- 0 327%kJo M§+(k—q)2 et 27|’
tions are* ¢,, thereforeg,. =+ ¢," . SinceF<0, the so- (323
lution of Egs.(29) obeys¢,” =— ¢, . From Eq.(B35) we
theln conclude that condensation occurs only in thecBan- - 92 J,w { M2+k2+q? [ M2+ (k+q)2
nel. o

In conclusion, for scalar NJL-type interactions there is ' 32m%kJo 2qk M2+ (k—q)?
only one independent gap function. Physically, this happens .
because for a point-like interaction there are no states with Z]it ’_{i}

) an , (32b

nonzero angular momentum, and so terms in the gap propor- €r 2T

tional tok — which signalL =1 — must vanish. In the next
section we show that scalar boson exchange over a finitghere we have performed the angular integration and de-
range,M <, lifts this degeneracy and produces two |nde'notedkz|k|'qz|q|_ Sincefal are real, the gap functiong

pendent gap functions. can be chosen to be real.
To obtain this result we assume that the exchanged boson
Ill. SOLVING THE GAP EQUATIONS has zero energy,=Kkg. This approximation can be justified

as follows. The dominant term iy ; comes from particles

The set of equation®7) determines the gap functions for ¢|ose to the Fermi surfacgs= . Assuming that| < u, this
massless fermions in the mean-field approximation. In PriNproduces a logarithmic dependence|g:

ciple, the gaps are functions of the 4-momentkin so that

Egs. (27) are actuallyintegral equations. In the following, Ao d N q A

we assume that the momentum dependence of the gap func- f Uv_q:j o 9 ~ = (33
tions is negligible. We comment on the validity of this ap- o € Jo Jig-p)+|e? lp|
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(We djscuss the ultravio[et cutofiuvé,u below) The as- ) @ (- q M§+(k+q)2 g
sumption that the gapyp| is small relative to the Fermi en- Fo=— —Zj —Inf—— tan}{ﬁ
ergy is justified in weak couplingy<1. To obtain the loga- 32m°kJo e |[Mg+(k—q)

rithm (33), the fermions have to stay close to the Fermi (K+)2 5 2

surface. This can only be achieved if the exchanged boson “In q 9 In (35)
has zero energygo= Ko. (k—q)?| 1672 A%e?’

Poles of the boson propagatay=ky=* \/M§+(k—q)2,
which we neglected in deriving Eq$32), represent pro-
cesses in which the fermions in the gap equation are far fro
the Fermi surface; this produces terms of order 1, but not oﬁ

grder In(f\UVII.d"_)' (Further, _E?ezmg %nly z+ert())-eknergy In the following, we turn to the solution of the gap equa-
osons also eliminates a possible dependencg@bnko.)  ions, first atT=0 and then at nonzer®. It is instructive to
Analogous to Eq(33), the functionsF; ; behave as start with the weak-coupling limig<1.

where A is a renormalization scale. One can readily con-
rxince oneself that foA >k, the renormalization scale can be
entified with the ultraviolet cutoff\ y, introduced above.
light of this, we takeA > u.

A. Weak-coupling limit

A A
f wdg _ f o dg ~ |nAUV (34) The gap energy is expected to be exponentially small in
o e Jo Jg+ru)+[e H weak coupling,¢~ u exp(—c/g?) [1]. The integrands of the

functionsjf{;1 are strongly peaked arourgp= w, since then
e" =|¢|<u. Consequently, the main contribution to the in-
in the limit Ayy>u>|¢|. Therefore, 7y, do not include tegrals g, comes from a(smal) region u—d<qg<u+ 4,
terms ~In(Ayy/|¢|) and, in weak coupling, can be ne- whereé=au, with some constara which we do not deter-
glected relative tdFa 1- Physically, this is because repre-  mine. The functionsr, ; are relatively suppressed by a factor
sents the excitation spectrum of quasi-antiparticles which are™/e™ =|¢|/2u<1. For §>|¢|:
always far from the Fermi surface, cf. Fig. 1.

While our approximations are controled only in weak .9 u M2+ (k+u)? | 25 36
coupling, we nevertheless find it illustrative to consider the 07 162 k n M2+ (k— u)2 nm, (363
qualitative nature of the solutions in strong coupling. or s
=1, the gap can be of or(_je.r. Similarly, the functionSFal. N 9 u M§+k2+,u2
are of comparable magnitude & ,. We therefore retain Fi=- 2K 5K
them in the following analysis. 16m »

It is surprising that an ultraviolet cutoff ;,, appears in 2 2

. ) . d Mg+ (k+ ) 26
the gap equations. There is no ultraviolet divergence for the xIn| ———— | =2} In—, (36b)
gap equations of ordinary superconductdrk as a cutoff is |V|§+ (k—p)? |41

provided by the Debye frequency,<<u, so that the inte-
grals receive contributions only from a narrow interval Fo=0, F;=0. (360
around the Fermi surfacg,— wp<qg<u+ wp. On the other

hand, inHe—3 the cutoff is provided by the chemical poten- Renormalization corrections are unimportant in this limit,
tial M since they only changé.

The appearance df,y is an artifact of our approximation The gap equatione30) were denvgd under the approxi-
of taking a constant gap. This approximation is manifestlyMation that the gaps are constants independer &om
inconsistent wheks 1. The gap functions fall off at large Ed- (36), however, we see that the functio, do depend
removing the apparent ultraviolet divergence. Consequenthystrongly onk, and peak aroun&= . Thus, as was seen
the true gap function is proportional @, not Ay, . That Previously in Eq.(33), in weak coupling pairing is domi-

there is no ultraviolet divergence in the true gap function carf!ated by fermions close to the Fermi surface. gerl it is
also be seen by considering the particle-particle andherefore consistent to neglect the momentum dependence of

antiparticle-antiparticle scattering amplitudes. The box diaboth 75, and the gap functions and consider the above ex-
grams whose infrared singularities generate a non-zero gajyessions36) atk=u.
[1] are manifestly ultraviolet finite, even in the relativistic ~ TO one-loop order, a scalar mass is generated by its cou-
regime. In order to simplify the solution of the gap equa-Pling to a fermion loop:
tions, however, we take the gap functions to be constant and
thus ignore these complications.

With this approximation, the integraF, is logarithmi-
cally divergent in the ultraviolet, whilgF; is finite. Instead
of using a fixed ultraviolet cutoff\ ;,, in Appendix C we If we had included scalar quartic interactions in the Lagrang-
show how]—"§ can be rendered finite by renormalization. ian (1), they would contribute th§ a term~\T?, wherex
The result is is the quartic coupling. Thus, at zero temperature there is no

2 2
g7 m
Mg:? ?—FTZ). (37)
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change, while at nonzero temperature there is an innocuou g=10___ A=10u , , , ,
increase ofM2. As will be disussed below, this tends to 0 e ——— 0
decreasd .. At + I
In weak couplingMs~gu<u, and we can further ap- ., =y = + E
proximate i A | 1a
2 2 4| =TT 14
Fo=— 9 |nAri nﬁ, (383 5 : : . ; ; N
1672 M2 |4l 0 0
A r - 11
2 2 . a2t 1 {2 m
I:—% InA;Vl—'uZ—Z In%. I T 1.
S ——- ¢=0.01n
(38b : i | | ® | | o :
We can now solve the gap equatiof80). Using (38) we e O
obtain
FIG. 3. The functionsﬁf1 as functions ok/u for ¢= u (solid),
N . 2 26 0.1 (dotted, and 0.0 (dashedl The coupling constant ig
b=~ F|n| ¢+ | (393 =10, the renormalization scale= 10w, the temperature is taken to
' be T=0.
. L9 28
b= a2 [ (399 merically. Since these functions dependiea|k|, the set of
s algebraic equation§30) is consistent only if thik depen-
o 2 25 dence is negligible. Before actually solvirig0), we there-
b =— ¢,+ n—2—1 In—r, (399 fore investigate the functional dependence&f, on k in
M3 fons detail. This dependence is shown in Fig. 3 ¢p+ 10 and in
Fig. 4 forg=1 for various values o&. The renormalization
_ 92 4u? 26 scale isA=10u in both cases.
b1+ = ¢’f+ In W_ 1 |n|¢r+| (399 As the couplingg or ¢ become larger, the function&; ;

depend less strongly da In weak coupling and for smadp,
By the same arguments used at the end of Sec. Il in the casg, , remain approximately constant, although they are then
Of a pOInt I|ke four ferm|0n |nteraCt|0n the fII’St two equa' Sma” |n magn|tude Wh”e}"L become peaked around the
tions yield ¢, =—¢, where ¢, is a solution of 1 Fermi surface. In strong coupllngfl is smaller thanf ,
=g?%/(87?)In(23|¢,",|). The last two equations indicate that
=9 I+ aq since therM ;~gu becomes large and the theory approaches
the gap functions for the quasi-antiparticles are larger tha@ne NJL I|m|t whereF=0. Note that changes in the renor-

2
those for the quasiparticles by a factof4p?/Mz]~1. In malization scale shift the values of the functiafig by a

conclusion, the solution of the gap equations to leading orderOnstant amount: a largev increases the absolute values of
in weak coupling reads
these functions.

872 872 (409
¢r:=—¢.+=zaexp[——2 ~Mexp[——2 ,
g g 005 I A=10 0.05
B B 4p?
b =—¢.= |n—2—1l¢r+. (40b) i}
S *o .

By Eq.(B35), this confirms the result already obtained in the
limit Mg—o that J=0 pairing of fermions interacting via
scalar boson exchange only occurs in the hannel. Note,

however, that in contrast to thilgs— case, wherep, _ o o
=¢,, in weak coupling there are two independent gaps. . had] . H 1% =
instead of one, withp,_ ~In(1/g?) ¢,", . 00 E e o 1 1010
0.15 | \ + @ 1 -0.15
B. Strong coupling 02055 05 10 15 ()o‘o 05 10 15 2002
In strong coupling, fermions of all energikg contribute o N
to the functions?—'él, so that they have to be computed nu- FIG. 4. Same as in Fig. 3, but fogr=1.
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2) 112 82
-1 ex —?

which is shown by the dashed line. Hefes 251 was taken
to fit the numerical results foA =10w. For a respectively
larger value, the weak-coupling limit can also approximately
fit the results forA =100u.
Turning to Fig. %b) we observe that, for increasing cou-
pling, the difference betweep,_ and¢,’, decreases. This is
in accord with our expectations, since the mass increases
~g, and consequently, the boson propagator approaches the
L form D(p,MS):llMﬁ. We have already discussed at the
6 7 8 end of Sec. Il that in this casg,", = ¢, and¢,” = ¢, . An
interesting observation is that the values for the quasi-
FIG. 5. (a) The dependence af (in units of u) on g?4= for ~ antiparticle gapp,_ are larger than those for the quasiparti-
A =10u (solid) and 10Q« (dotted. (b) The corresponding values of cle gap(j;:r+ for all values ofg, not just in weak coupling, cf.
¢, (upper set of curvesand ¢;, (lower set of curveks in units of Eq. (40).
¢. The dashed curve it@) corresponds to the weak-coupling limit
for ¢.

4 2
|~ . (4D
S

¢:25[2+2

o L ‘; —— A=10p
; —m A=100p
s a ——- p~oxp(-87°/g")

o, o0

0 1t 2 3,4 5 6 7 0 1 2 3,4 5
g/4n g'/4n

C. Temperature dependence of the gap

) . . ) Finally, we discuss the temperature dependence of the ga
Lastly We_ find that while th? functlon.%'({l change with functiong. As in ordinary sup%rconducto?s, the valuegof o

¢, the functions?, , are nearly independent f. The latter  jecreases with temperature, and vanisheE.atthe critical

is easily understood for smaliy|<pu, since¢ only enters  temperature for the onset of superconductivity, in our

the integrals througle™ = \(q+ u)“+ ¢“=2u for |#|<u.  case, superfluidity T. can be estimated in weak coupling,

It is interesting, however, that this behavior persists also fohere the integrals peak in a narrow region aropndVith

|¢| of order . ¢=0 one derives
In conclusion, neglecting a possibkedependence does
not appear to be a bad approximation unless the coupling g% 4u? (6
becomes substantially smaller than 1. The results of Sec. Fo=- In—In—, (429

[Il A are then sufficient to obtain the exponential dependence
of the gaps on the coupling; to determine the prefador
requires more sophisticated methods to solve the gap equa- n g
tions, for instance the approach of RE20]. However, the 1 16572
gap energies become rather small §pr1, cf. Fig. 5. We
shall therefore numerically evaluate the gap equati@®
only for g=1, where thek dependence can be safely ne- Fr=0. Fr=0 (420
glected. In what follows, we then always take the values of o= e
the functions7g; at momenturk= ..

Solving the gap equation80) numerically, we find that
the solutions satisfy the relationsp, . =—¢," ,¢,_

where {=2e”/, and vy is the Euler—Mascheroni constant.
Using ¢, = — ¢,_ , the gap equations &t yield the condi-

=—¢,,, as is true in the limits oM — and weak cou- tion

pling. According to Eq{(B35), this implies that for massless 2 s

fermions interacting via scalar boson exchange, condensation 1= 9 In>— (43)
is possible only in the © channel. gm? Tc

In Fig. 5(@) we show the dependence of the quantity

o=\ 1P+ 12+ 1P+, 1°

for the critical temperature, i.e.,

{

Te=5 /- (T=0)=0.57¢/,(T=0). (44)

atT=0 ong?/4, and in Fig. %b) the associated behavior of

¢,_ and ¢, , normalized tog, both for different values of This relation is identical to that found in BCS thedj.

the renormalization scal&. For arbitraryg, the value ofT. has to be determined nu-
The value of¢ decreases rapidly with the coupling, but merically. For the temperature-dependent boson mass con-

values of¢ of the order ofu and larger are possible if the sidered here, the increase of the mass Witittually leads to

coupling is sufficiently large. The value @f increases with  smaller values forT; than expected from the BCS result

increasing renormalization scale. The overall behavior is (44), see Fig. 6. This is in agreement with the general expec-

in good agreement with the weak-coupling limit tation that larger boson masses lead to smaller values for the
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9=5 A=10n_ ‘ ‘ l form factors employed there to remove the ultraviolet diver-
gence of the gap integrals.

Clearly, it is essential to correctly compute the magnitude
of the gap in QCD. Studies along this line are in progress
[17,18.

25
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00 o Il T 04 0s APPENDIX A: THE MEAN-FIELD APPROXIMATION

Consider a statistical mechanical system at finite tempera-
ture T and chemical potentigk where fermions interact via
exchange of arN-component bosonic field. Fad=1 the
Lagrangian is identical with Eq(l). The grand partition
function of this system is

FIG. 6. The temperature dependencedgf, and ¢, for g
=5A=10u. T,=0.47u is smaller than the value 0.87, (T=0)
=1.25 expected in weak coupling.

gap ¢, and consequently to smaller valuesTgf. We find
that¢,", and¢,_ always vanish at the same temperature for
any value of the coupling.

Z=N f DyYDYD exp{I[ 4,4, 1}, (Ala)

IV. CONCLUSIONS '[E’WNZL’ ( X)[Gg 171X, y) (y)

In this paper, we have investigated superfluidity in a sys-
tem of massless fermions interacting via scalar boson ex- -
change. The gap matrix contains in general four independent
gap functions, corresponding to the condensation of fermions
with the same helicity and chirality. We solved the gap equa- f
tions in the mean-field approximation as functions of the X
couplingg and the renormalization scale. For scalar boson
exchange, condensation in the @hannel does not occur, Here,
and the number of independent gap functions reduces to two, o -
one for quasiparticles and one for quasi-antiparticles. The [Go ] (xy)==iliy-0= pyo—m]sW(x-y). (A2)
guasi-antiparticle gap is found to be larger than the quaS|pa
ticle gap, by a factor-In(1/g?) in weak coupling. This is in
contrast_to NJIT-type models, where Fh'e po.int—like four- form includes scalar interactions f(M 1, I'1=1, vector
fermion interactions do not allow for pairing with=S=1 a_ga1L

interactions foN=4, ¢ “hu, I'a=0a-1..7" Dab
and force the equality of the quasiparticle and quasi-_ (D 1w »=0, . © 3 andsirﬁilarl for
antiparticle gaps. We also analyzed the temperature depentﬁgr l|rl1ltera<:t|on%b Tthe tI;Losomc flelds can be formyall inte-
dence of the gap functions, and found that a temperature y
dependent boson mass can significantly redlice grated out with the result

Qualitatively, our model shares the feature with QCD that . .
the gap is exponentially small fgr<1. As can be seen from Z=/\/’(detD‘1)‘1’2f DyDyexgI[ 4, ¢]}, (A3a)

Fig. 5@), in that regime small variations of the coupling lead
to order-of-magnitude changes in the gap. Moreover, the gap

energies are quite sensitive to the value of the ultraviolet |[y, ¢]:f (J(X)[Gg]—l(x,yw(y)
cutoff Ayy~A. Taking a small value for the coupling, y

Bailin and Love found gap energies which are extremely

?MZ

HF(X)D a5 (X,Y) $°(y)

1

N| =

QD

M =z

gy OOT 4gh(X) PH(X). (Alb)

a=1

ab(X,y) is the boson propagator, the structure of which
need not be further specified at this point. The above

2

9

small, ~10 3u~1 MeV for u~1 GeV [3]. In more re- = 2 (x)Fa¢(x)Dab(x y) ( T pi(y) |.
cent studie$6,7,9,13, much larger gaps;-100 MeV, were 2 ab
found. Such large gaps can be obtained from the treatment of (A3b)

Bailin and Love simply by taking larger coupling constants.
Alternatively, the latter studies would get smaller values forThe last term physically corresponds to the current-current
the gap by reducing the coupling constant, or changing théteraction displayed in Fig. 7. Since it is biquadratic in the

094013-11



ROBERT D. PISARSKI AND DIRK H. RISCHKE PHYSICAL REVIEW D60 094013

Then, assumin® ,5(X,Y) =Dpa(Y,X), one has to first order

<2l

in ps:
g° S —
a - La(x)D*(x,y) ()T pip(y)
D®(x- > P(X) g b
g]; ---g)-(-Y)S, grb a,b
1
=5 2 19D (Xy)js(Y)
a,b
1
A v =5 2 [1a00)D* XY iu(y)
FIG. 7. The current-current interaction. ’ )
+2p2(X)D2(X,Y)(ju(¥))]
fermion fields, the integration ova;,zp cannot be carried 1 ) b )
out. In this appendix, we discuss mean-field approximations =5 ;) [=(Ja0))D*(X,y)(ju(Y))

to (A3a). The idea is to approximate the biquadratic term in
(A3b) by a bilinear term times &ermion condensatevhich +2j.)D22(x,y)(jp(Y))]. (AB)
then allows for integrating ovey, . In principle, one can ) , ) ) i

either have an antifermion-fermion condensate or a fermionNSerting this back intdA3b) and integrating over the fer-

fermion condensate, the latter being the case of interest iffion fields in(A3a) gives the partition function in the mean-
describing the phenomenon of superconductivity. field approximation for an antifermion-fermion condensate

— —1\— +_q-
Z(7ry =N (detD™") " 2de{G &, 177
1. The mean-field approximation for an antifermion-fermion
condensate

2
g —
Xexp[ — 7f 2 (POOT (X)) D(x,y)
In the mean-field approximation one approximates two of xyab
the four fermion fields in the last term iA3b) by their

expectation value in order to obtain a bilinear form in the X(E(y)l“blp(y))], (A7)
fermion fields which allows for irlegration ovep, iy in

(A3a). One possibility is to contraay and ¢, as shown in  where the(inverse fermion propagator is
Fig. 8@. The expectation valuéy ) corresponds to an - - _
antifermion-fermion condensate. [G<+Ep>] Yx,y)=[Gg 1 t(x,y) —ig26(x—y)
More specifically[21], define
. — x f 2 TD¥(x,2) (2T p(2)).
Ja()=gP()T 4(x), (Ad) 4 ’
(A8)

and introduce the fluctuatiop,(x) of j,(x) around its ex-

pectation valugj,(x)), This last equation is obviously a self-consistency equation

(or gap equation, or Schwinger-Dyson equatidar the
mean-field propagator, since

Pa(x):ja(x)_<ja(x)>- (A5) _ N
<¢(Z)Fb¢(z)>ETr{G<ﬁ:>(Zuz)rb}- (A9)

= <“’c ) ¥ The explicit evaluation of the partition function is facilitated

IO0); assuming translational invariance which allows to Fourier-
transform all quantities to momentum space, for details, see
[21].

2. The mean-field approximation for a fermion-fermion
condensate

In the previous subsection Al, we have discussed the
) b) mean-field approximation for an antifermion-fermion con-

@ densate. Now we discuss condensation of fermion pairs. In-
FIG. 8. (a) The mean-field approximation for an antifermion- stead of contractings and , we now contracty and ¢ (or

fermion condensate, obtained by contractinfy) and ¢(y). (b) ~ €quivalently,ys andy), cf. Fig. 8b). This leads to a fermion-
The mean-field approximation for a fermion-fermion condensatefermion condensate. More specifically, introduce the charge-

contractingy(x) and y(y). conjugate spinotyc via (3), and defind’, as
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r,=Cric—m (A10)
Then, the four-fermion term iGA3b) is written as
YOOT 2/ () (y) Ty Y)
1 - _
= 5[ appc() ()T pip(y) +H.C]
1 _
== 5T 703" (¥.%) yol ad(x,y) T+ H.cl, (ALD)
where we introduced the>44 matrix
Jap(XY) = trea(X) YY),
I5a(¥:3) =[3ag6N = [votr(¥) 16l ¥c(X) Yola -
(A12)
Introducing the fluctuation of this matrix around its expecta-
tion value,
P(XaY)EJ(va)_“(X,y»a (A13)
and expandingAll) to linear order inp yields
YOOT ) YY) Tpi(y)
1 _
= ST yo{3"(¥. %)) ol a{I(x,y))T
—2903"(y, %) ol a(I(x,y))Tp+ H.C]. (A14)

PHYSICAL REVIEW [0 094013

to compute the expectation vaI(|¢C(x)Z(y)>. This is done
as follows. The Hermitian conjugate of the first term in
square brackets ifA16) is

[cO)AT(,Y) p(y) T =g(Y)A (Y, X) hc(X), (A18)

where
Ai(yix)EYO[A+(va)]T}yO' (Alg)

The first term in(A16) can be rewritten in terms of charge-
conjugate spinors as

PO[Gg 171X Y)#(Y) = () Go 171y, X) he(X).
(A20)

Introducing the 8-component spinors

v\
‘I’E( ) V=(4,¢c), (A21)
e

the action(A16) can be written in compact matrix notation
as

_ 1( —
|[‘1’,‘I’]=§L y‘I’(X)S_l(X,Y)‘I’(Y), (A22)

where

Slz([ea]-l A )

AT Gy (A23

Let us assume translational invariance for the gap matrix,

The result for the partition function in the mean-field ap-Ai(X'y):Ai(X_y)- Then, the Fourier transforms of the

proximation for a fermion-fermion condensate reads

Z( FF) :M(detD_l)_llz
g? —
xexp{zf > T yo(3T(y,%)) Yol a(I(x,¥))Ty
X,y a,b
+H.c.]Dab(x,y)]jDZDl//exp{l[E,w]}, (A15)
with
ILyu= ny(ﬁxxea]l(x,y)my)

1
+§[t//c(X)A*(X,y)t//(y)+H-C-] , (A16)

where

A+(x,y>zgza2b To{ () (y))TuD2R(x,y). (A17)

fields and[G, ]~ 1, A~ are

_i —ik-x I :i iK%
‘MX)_N; ek Xy(k),  w(x) N; e Xy(k),
(A24a)
1 )
lﬁc(x):\/—v Ek e Xy (k),
_ 1 o
Ye(X)= N g e* Xy (k), (A24b)
+9—-1 T —ik- x| +9—-1
[G517 =3 2 e (Gg] H(K),
T )
Ai(x)zv > e K XA* (k). (A240)

Note the choice of signs in the exponential factors dgr
andA ™. From Eq.(3), one would have expected the opposite
sign. This choice has the consequence

Pe(K)=Cy(—k), dc(k)=y¢T(—K)C,

This equation uniquely defines the gap equation in the mean-

field approximation. In order to solve this equation, one has

AT =>[A* (] (A25)
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It also ensures that the action is diagonal in momentum D&
space: .
Ak of ! A \' o,
- T - Ll @ :
S l( k) G; @ G'@

_ 1 _
|[qf,«p]:§2 Y (k) —— (k). (A26)
k FIG. 9. The gap equation.

In the conventional approach to superconductivity, the action
is only diagonalized after performing a Bogoliubov transfor- The off-diagonal components &f satisfy the identity
mation. The choice of signs in the Fourier transforms
(A24b),(A24¢) for the charge-conjugate spinor antl™ GgAiGi =GTA"G, . (A33)
avoids this additional complication.

In order to complete the calculation of the grand partition.l.
function in the mean-field approximation, one has to perform —

PP P From Eq.(A31), and from (W (k)W 5(K))=—TS,4(K)

the Grassmann integration over the fermE)n fieldss. In (this identity is proven e.g. in Appendix B $21]) one ob-
the action(A26), however, the fields/c(K),¥c(k) also en-  tains
ter; these are not independent integration variables on ac-
count of (3). To proceed, fron{A25) one derives the identi-

ties (e P(y))= 2e*‘k“*V)Gg(k)A*(k)G*(k).
W(—K)=Cyl(k), Y(—K=yl(KC, (A27) (A34)

his can be proven directly, or by solving=1SS ~ 1.

<l -

and rewrites the integration measure as Inserting this inta/A17) and taking the Fourier transform,

o o one obtains the gap equation
DyDy=11 dykdy(k)

o A+<k>=92$2 2, TaD*(k—q)
=11 dutkody(—kdy(kydy(—k) @b
XGg (AT ()G (T (A35)

N1 dykydyc(k)dyk)dyc(k), (A28) , _ o
k>0 The gap equation has a graphical representation which is
derived from Fig. &), cf. Fig. 9. All that changed with

whereV/is the(irrelevant, since constandacobian from the respect to Fig. &) is that the explicit value 0¢¢c(X)J(Y)>

transformationA27). Moreover, one can show that from (A31) was used. The blob in Fig. 9 stands for the gap
1 S~1(K) S7Y(K) matrix, while the thick(thin) lines represent the fullfree)
=2 V(K (k)= ¥(k) P (K). propagator.
2% T k>0 T
(A29) APPENDIX B: THE STRUCTURE OF A SCALAR GAP
Then MATRIX

1 In this appendix we analyze the Dirac structure of a scalar
} gap matrix. We find that in general there aightindepen-

DyDypexp{I[V, ¥ ]} =Ndet o ——
J VD explll ly=Ndek-o T dent gap functions. Fermi statistics imposes a powerful sym-
1 metry constraint on these functions. With respect to parity,
~ S
=M det —
% { T nel of even parity, the other four in the odd-parity channel.
Only fermions with the same helicity condense. With respect

1/2
) . (A30) four of the gap functions describe condensation in the chan-
The full propagatorS(k) is determined from solving 1 o chirality, four gap functions describe condensation of pairs

=818, with the result with the same, the other four that of pairs with the opposite
chirality. The chirality and helicity properties of the gap
G™ —G[{A‘G‘ functions suggest a different representation scheme for the
S= ( _GrA*Gt o ) , (A31) gap matrix. Within this scheme, we derive that the number of
0 independent gap functions reduceddar in the ultrarelativ-
istic limit.
where all functions depend on the 4-momentlth and
where we have introduced 1. Dirac structure

The Fourier transform (k) of the (translationally invari-

G*={[Go] '-X"}7h, I*=AGyA*. (A32)  anp scalar gap matrid(x—Yy) can be expanded in the basis
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of the 16 linearly independent>44 matrices. However, for is effected by[22] S(P)= 5p7y,, Where pp=*1 is the in-
condensation in thg=0 channel, all Lorentz indices have to trinsic parity of a particle. Thusy, has even parity,
be contracted with either the 4-momentukt, or, because S (P) YoS(P)=7v,, ~while ' has odd parity,
of the presence of a medium, with the respective 4-velociys *(P)y'S(P)=—+'. Wave functions transform as

of this medium,u#. This leaves the eight matrices O (1, X)=S(P)f(t,—x)= ppyotb(t,— %), i.e., with (3),
Ue(t,X) = — ¢c(t, —x)S(P), which shows that the spinafc
Ly-Ky-uyKyuvys, vy Kysy u,ysy-Ky-u. has opposite parity frong.
(B1) We rewrite the actiorf2) in Fourier space, with the con-

) ventions listed in Eq(A24):
In the rest frame of the mediura#=(1,0), the most general

ansatz forA is then — — S
) A A Ly y)= 25 | w(KLGg 1M (K (k)
A=A1y5t A2y Kyoyst Azyoys+ A+ Asy-Kyo+Agy-k

A 1
+A7y-Kyst+Agyo, (B2) +5lgcAk) gk +H.c]y. (B6)

wherek=k/|k|, and where the gap matrik as well as the
gap functionsA,, depend orkg,k. The notation follows that
of Bailin and Love[3].

Then, the term

Ye(K)(A1ys+ A7 Kyoys+Asyoys+ Ay Kys) (k)

2. Symmetry properties (B7)

The antisymmetry of the fermion fields provides a pow-represents condensation in tixeen-parity channelhile the
erful constraint on the gap functions,,. With (3) andC  tgrm

=—C~1 one rewrites

_ Pe(K)(As+Agy-kyo+ Agy-k+Agyo) (k) (BY)
fxywdxm(x—y) w(y)

represents condensation in theéd-parity channel.

__ T T T

- Jy,xlp (X)[A(y X)] C(y) 4. Helicity

The spinorsy, i, e, i in the effective action(B6) can

:J Ye(X)CHA(y=x)]TCy(y), (B3)  be decomposed with respect to their helicity. The helicity
X projector is given by

i.e., in Fourier space 1+ K
L pT P(l)= 1TV (B9)
CA(K)C 1=AT(—kK). (B4) 2
UsingCy,C 1=~ 7;. this implies: and we denote the helicity-projected spinors by
Ank)=+AN(-k), n=1,..., 6, - -

9=+ A=) Vo (0=Po((K),  P(=h(K)P(K),

An(k)=—AT(~k), n=78. (B5) (B103
If we neglect the energy-momentum dependence of the gap Yo (K)=P.(K)pc(k), ZCi(k)=ZC(k)Pt(k).
functionsA,,, as we do in our solution of the gap equations, (B10b
then this equation demands thag, ... ,Ag are symmetric

matrices in the space of internal degrees of freedom, whild'he second equation results from the fact that due to our sign
A; and Ag are antisymmetric In QCD, for exampleA[l(;  convention in(A24b), in Fourier spacejc(k)=¢'(—k)C.
=A}41,n=1,...,6,while Aj(=—A} ;,n=7,8[for no- The inverse free fermion propagator as well as the gap
tation see the discussion preceding EqJ. If the A, do not  matrix (B2) commute with the helicity projector,

have internal degrees of freedom, thepandAg must van-

ish, as noted by Bailin and Lovi8]. We stress, however, [[Gg1 X(k),PL(k)]=[A(k),P+(k)]=0. (B1))
that A; and Ag need not vanish when they carry internal
degrees of freedom. This means that the actiai6) does not mix states of dif-
ferent helicity,
3. Parity
Under a parity transformation;—t,x— — X, so 3-vectors |[% e > I[E&w‘ps]- (B12)
change their sign. On Dirac spinors, a parity transformation s=+
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As a consequence, condensation in a scalar@) channel A67-|2+A8y0 (B21)

can only occur between fermions of the same helicity+

or ——). For a physical explanation, see the discussion fol-

lowing Eq. (10). describes condensation of opposite-chirality fermions in the
odd-parity channel.

5. Chirality
The chirality projector is given by 6. Quasiprojector representation of the gap matrix
1+ ys The properties of the gap matrix with respect to chirality
Pri=—5— (B13)  and helicity suggest a somewhat different representation. In-
stead of the eight matric81), one can use the eight ma-
Let us introduce right- and left-handed spinors via trices constructed from chirality, helicity, and energy projec-
tors. We use the following projectors onto states of positive
nW=Py, v=Py, (Bl4a  and negative energy for free particles:
b=¢P, yh=y¢P,. (B14b) . ExE(yov-ktmyp)  1=(Bxyoy k+ ayyo)
A= 2E B 2 ’
With (3), one then derives k (B22)
per=Pic, =Py, (B153

. _ where a,.=m/E, B =|K|/E,. These differ byy, and the
Yer=ycPr, Yo=yvcP . (B15b) normalization of the spinors from the commonly used pro-
jectors[22], but have the advantage that they are regular in
the limit m—O0.

The helicity projectors commute with either the chirality
or these energy projectors,

Let us now investigate the effect of the chirality projectors
on the gap matrix(B2). From y*ys=—vygsy* and 7?,2',
=P, ,, PP, =0 one derives

PraAP 1 =A1ys+ A,y Kyoys+ A+ Asy-Kyo,  (B16) [P 1, P+ (K)]=[P+(k),A"(k)]=0, (B23)

while

. N but, for finite m, as massive spinors are not eigenstates of
PiAP 1= Asyoyst Agy-k+Azy-Kys+Agyo, (BL17)  chirality, the energy projectors do not commute with the

. ) chirality projectors,
This result means that,, A,, A,, andAs are gap functions ¥ prol

describing condensation of fermion pairs with tkame
chirality (right-right or left-lefy, while A3, Ag, A;, andAg [P AT K ]=Fawyvors, [P ATK)]=*awyoys.
are gap functions describing condensation of fermion pairs (B24)
with the oppositechirality (right-left and left-righj.
Let us summarize the results of this and the preceding
subsections. Only particles with the same helicity can con- Let us introduce the “quasiprojectors”
dense to form a scalarJ&0) condensate. In the general
ansatz(B2), the term

Pri(K)=P  P=(K)A™(K). (B25)
AyystAyy-kyoys (B19
These eight quantities constitute a basis which is equivalent
describes the condensation of fermions with saenechiral-  t0 (B1). Therefore, the general gap matf2) can alterna-
ity in the even-paritychannel, while tively be written as
Ayt Asy-kyo (B19) A=¢ P+ ¢ Pt d _Pl_+¢_PL

describes condensation of fermions with the same chirality in Pt APt b Pt AP
the odd-parity channel, and (B26)

AsyoystAry-kys (B20) . . . o
with an obvious notation for the new gap functioss, .. .
describes condensation opposite-chiralityfermions in the  The old gap function\, can be expressed in terms of the
even-paritychannel, while new gap functionsp:
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1

A= g{(1+ﬁk)[¢,1—¢>.t+¢>r1—¢|_+]+(1—Bk)[¢>rt—¢|+++¢F+—¢|i]}. (B273
1

Bo= {1+ BIL— &/ + i+ b — 1+ (1-BIld — bl s+ i T, (827D
% + + + + - - - -

Bo=gl=dii— bl + ¢t b+ o+ b~ b=, (8279
1

8= gl(1+BILS  + " + b+ 1+ (1= BIld + o+ i+ i T (B27d)
1

Ag= g{(1+ﬁk)[—¢rﬁ—d>|+_+d>F_+¢F+]+(1—ﬁk)[¢f_+¢ﬁ+—¢F+—¢F_]}, (B27¢
% + + + + - - - -

Ag= E[_¢r++¢r7+¢I+_¢I7+¢r+_¢rf_¢l++¢lf]v (B27f)
o

A= gl = Tl = b — bt b — i+, (B279
% + + + + - - - -

Ag=g b i+ b +ditd — b —d—d—d ] (B27h

|
The new basigB25) is complete, ay
P;_,Pﬁ_,=7 YoVsPx (B299
h; 2 2 Phy(k)=1. (B28)

_ _ ag _
P1+Pre=— ?7075,Pri ,

However, usingB24) we find that the quasiprojecto(B25)

— - o -
are not true projectors: PiePr==Pi=t 5 vorsPr=, (B299
ay
7)++P++:73+++_'y Y 7)++1 — ag -
I 2 TOTTIE 7’r+¢7’r¢=770757’|¢,
o L S P = — X yoysPr B29
PrPi===%5YorsPi=, (B293 PraPre==%YoysP i (B29¢

by % _
ay Pupri—?)’o?’spria

PE?L :? 707573:2: )

PIrPI::_77075Pr1-v (B29f)
ay
PPl =Pia= 5 Y0¥sP i, (B29b)
[09% I
Pr+Pr+_ ?70757)&’
-y _— % - - 5t _ %k + 2
PriPia=Prs 2 YoYsPi« PrePie= 2 Yo¥s P+, (B299
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- ay . The use of the projectors makes it clear that there are only
Pi+Pre=— > Yo¥sPyx four condensates for massless fermions. This was not appar-
ent previously[3].
@ Another consequence 6B32) is that the actiorB6) de-
PP =5 YovsP (B29h  composes into four parts; witlt;" . =P, ¢,

(the argumenk was dropped for convenience — o 4 — 4

For the remainder of this subsection, we consider the ul- Dbl =10es e 11D ]
trarelativistic limit, m=«,,=0,8,=1. In this limit, the qua- D b 1+ 1Td dr
siprojectors becomérue projectors. Moreover, four of the W10 i), (B34
eight projectors vanish,

Pr=P=P=P.=0 (m=0). (B30 [Uhs =2 | UR[GG 1 (k) ¥i(k)
K
This is another way of stating that there are no massless
right- (left-) handed fermions with negati@ositive) helic- n E[Ze (K)A(K) g2 (K)+ H.c]
Chs hs el

ity and positive energy, and no righteft-) handed fermions
with positive (negative helicity and negative energy. The
reduction in the number of projectors can be intuitively un-
derstood noting that massless fermions can be described in
terms of 2-component Weyl spinors which require only thewhereh=r,l,s=+,e=+. We draw the important conclu-

(B34b

simpler algebra of linearly independenk2 matrices. sion thatin the ultrarelativistic limit, there is condensation
Another consequence of the ultrarelativistic limit is thatonly of fermions with the same helicity and the same chiral-
one of the three projectors (B25) is redundant: ity.

In the scalar model we find thab’, =—¢;" and ¢,_

P 1-(K) =P Po(k) =P AT (K)=P. (KA (k), — ¢, thus

(B31a

Pr_ 1 (=P, Pk =Py A~ (K =P (KA~ (K). L L
(B31b) M=3l o] A=sl— ¢+,

Thus, we could use any two of the three projectors for chiral-
ity, helicity, and energy to constru@25). We keep all three
indices, however, because it facilitates the physical interpre- A,=A5=0. (B39
tation of our results.

Whenm=0, as the four projector®30) vanish, the eight
independent gap functions reducefoar, and Eq.(B26) be-
comes

From Egs.(B18),(B19) we conclude that condensation oc-
curs only in the @ channel, and not the Ochannel.

A:¢r++73r+++¢|t73|+7+¢r7—73r7—+¢|7+73|7+- (B32) APPENDIX C: RENORMALIZING Fq

Using Eq.(B27) we obtain for the gap functions,: ALT=0, we rewrite the functiory as

1
M=glof—d o —dn]  (B3a . @[ d’

1
=zl- o+ +o—di] (B33 +Fer (C1)

1 1
D(k—q,Mg)——-D(k—q,0) —
€ |q

with the counter term
1 _ _
A4:Z[¢r+++¢l+—+¢r—+¢l+]! (B339 g
= f ——D(k—q,0 Fik (C2
01|

= Z[_¢r+_¢l+—+d’r—+ é1+1, (B33d e assume that the renormalized boson mass vanishes at
zero density and temperature, and so in the counter term we
take the boson to have zero mass as well.
Az=Ag=A;=Ag=0. (B33e The first integral in(C1) is now ultraviolet-finite. The
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counter term/C2) can be computed via dimensional regular-
ization. First rewrite(C2), using[23]

1 I'(a+pB) (1 x4 Y(1—x)P L
= X (C3
a®b? T(@)T(B)Jo  [ax+b(1—x)]«"A
and shiftingg— g+ kx, into
gz 1 1 d3q 1

]:CT: - _J dx J’ .

8Jo Vi-xJ (27)3 [q?+k>x(1—x)]%?
(CH

Now compute the last integral ith=3— ¢ dimensions. Note

that this impliesg?>—g?A3~ % whereA has dimensions of
energy. The standard formula3]

PHYSICAL REVIEW 0 094013

B+1 B+1
L o (VR
o 1 1 2 2
f dxxB =_

0 [X2+M2]a 2 F(a)[M2]a—(ﬁ+l)/2

(CH
leads to
F 92 < (Co)
= — ——In ,
T 1em?le  A2?

where Ae is the renormalization scalé\=A \/mel™ "2,
being the Euler—Mascheroni constant. As usual, tleedrin
in (C6) is discarded.
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